首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk chemical and mineral analyses of five L6 chondrites of shock facies d to f bring the number of L6 falls analyzed by Jarosewich to 20 and enable us: 1) to examine the chemical effects of shock melting in chondrites of the same petrologic type that presumably sample a limited stratigraphic range in their parent body; and 2) to seek depth-related chemical variations by comparing the compositions of L3 and melt-free L6 chondrites. The mean Fe/Mg, Si/Mg, S/Mg and Ni/Mg ratios of melt-free L6 chondrites (shock facies a to c) are virtually identical to those of L3 chondrites, suggesting that L-group material had the same bulk composition early (L6) and late (L3) in the accretion of the parent body. Wider variations of S/Mg and Ni/Mg in L6 chondrites may signify that L6 material was less well mixed than L3, or that some mobilization of metal and troilite occurred at shock intensities (facies c) too low to melt silicates. L6 chondrites that experienced shock melting of silicates (facies d to f) show wide variations of Fe/Mg, Si/Mg, S/Mg and Ni/Mg. It appears that most of the major element variation in the L-group is tertiary (shock-related) rather than primary (nebular, accretionary) or secondary (metamorphic). There is some evidence that L-group chondrites comprise two subgroups with different Fe/S ratios, but these subgroups are now poorly defined and their significance is unknown.  相似文献   

2.
We review our procedures for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of fades d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L-chondrites come from one parent body, type-correlated chemical trends suggest: 1) that the body had a traditional “onion skin” structure, with metamorphic intensity increasing with depth; and 2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.  相似文献   

3.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

4.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   

5.
Abstract— Fayalitic olivine (Fa54–94) is a ubiquitous component in the matrix of Krymka (LL3.1) as well as in other highly unequilibrated chondrites (ordinary and carbonaceous). In Krymka, the fayalitic olivine has an unusual anisotropic platy morphology that occurs in at least five types of textural settings that can be characterized as: (1) isolated platelets, (2) clusters of platelets, (3) euhedral to subhedral crystals, (4) overgrowths of platelets on forsteritic olivine, and (5) fluffy (porous) aggregates. From transmission electron microscope (TEM) investigation, the direction of elongation of the platy olivine overgrowths on forsteritic olivine substrates is along the c axis and in most cases it corresponds with the c axis of the substrate olivine, which suggests that the fayalitic olivine grew in this unusual morphology and is not a replacement product of preexisting material. The fayalitic olivine in the matrix of Krymka is compositionally similar to olivine with platy morphology in the matrix of some CV3 chondrites and both have similar Fe/Mn ratios, but important morphological differences indicate that their relationship needs to be explored further. Textural and compositional data indicate that the fayalitic olivine in the matrix of Krymka, as well as in some other unequilibrated ordinary chondrites, formed prior to final lithification of the meteorite and probably prior to parent body accretion. We find that formation of the fayalitic olivine by vapor-solid growth provides the best explanation for our observations and data and is the only feasible mechanism for the formation of fayalitic olivine in the matrix of Krymka. We propose that the fayalitic olivine formed by vaporization and recondensation of olivine rich-dust, during a period of enhanced dust/gas ratio in the nebula.  相似文献   

6.
We used two different methods of statistical analysis—cluster analysis and principal component analysis—to analyze the concentrations of principal chemical components (Si, Mg, Ca, Fe, Ni) and Co in ordinary chondrites. The analysis is based predominantly on published data (metadata). In total, chemical composition data from 646 ordinary chondrites were used in the statistical analysis. The aim of this analysis was to establish whether it would be possible or not to distinguish H, L, and LL chondrites based on the concentrations of major elements and Co in their bulk chemical compositions. It was also important to determine what conclusions such an analysis could enable to draw about matter differentiation in the formation environments of primordial parent bodies of particular ordinary chondrite groups (H, L, and LL). Another aim of the statistical analysis was to determine whether the distribution of Fe and Ni (with Co admixtures) is independent of petrographic types within particular groups of chondrites. This is of crucial importance for determining the distribution of FeNi(Co) ore occurrences in potential extraterrestrial deposits on modern asteroids—the sources of ordinary chondrites. The obtained results of statistical analyses confirmed that a clear-cut distinction between particular groups of ordinary chondrites is only possible for group H, while distinguishing L chondrites from LL chondrites is not always obvious. The results of the statistical analyses relating to the question of the possible existence of several primordial parent bodies (formation environments) of each group of ordinary chondrites are consistent with the results of contemporary astronomical spectroscopy research. What is particularly interesting is obtaining indications of the existence of common formation environments of the matter of L and LL chondrites, possibly on a few primordial parent bodies. The statistical analyses indicate that there is no correlation between the concentration of principal chemical components and the petrographic type of ordinary chondrites. This proves homogenous distributions of these elements within the parent bodies of each group of ordinary chondrites. Hence, the distribution of these elements in individual present-day asteroids is also homogenous.  相似文献   

7.
Petrographic, mineralogical and bulk chemical data are presented for three of approximately 25 L-group chondrites with which we are attempting to define and interpret major element chemical variations in the L-group. Two of these unbrecciated L6 chondrites - Aïr and Apt - have olivine and feldspar characteristics that testify to shock pressures of approximately 240–260 kb; they contain sparse veins and pockets of glass. The third, Tourinnes-la-Grosse, experienced a lower shock pressure and lacks such evidence of melting.  相似文献   

8.
Rare earth elements (REE) and uranium were studied for their distributions in various component phases of four ordinary chondrites, Kesen (H4), Richardton (H5), Bruderheim (L6), and Saint Séverin (LL6). A selective dissolution method was applied for the phase fractionation. The REE were analysed by neutron activation analysis, and U was determined by neutron-induced fission tracks. The present study revealed that both REE and U are highly enriched in the Ca-phosphate minerals with different enrichment factors, implying chemical fractionation between them. The phosphates seem to be responsible for more than 80% of the light REE in all chondrites. On the other hand, only 20–40% of the total U resides in the Ca-phosphates. This difference in enrichments might have been caused through the levels of metamorphic activity on the meteoritic parent bodies.  相似文献   

9.
Measurements on the metal of the LL chondrites Appley Bridge, Jelica, Olivenza, and Khanpur have shown that the Co: Ni ratio of the metal is near 1.24 and that Prior's law appears to be followed to some extent within the LL group.  相似文献   

10.
The size frequency distributions of fluid drop chondrules in 11 ordinary chondrites (five H3, one H4, four L3, one LL3) have been determined by optical measurements in petrographic thin sections. The extreme range of median size of the fluid drop chondrules in individual meteorites is only slightly greater than lφ unit, and the grain size frequency distributions are approximately log normal. Chondrule size frequency distributions generally are fine skewed, platykurtic, and indicate moderate sorting. The size frequency distributions of fluid drop chondrules in ordinary chondrites are distinctly coarser than similar chondrules measured previously in CM2 and C03 carbonaceous chondrites.  相似文献   

11.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

12.
Abstract— Age patterns observed in meteorite groups reflect the different thermal or impact histories experienced by their parent bodies. To assess the number of ordinary chondrite (OC) parent bodies rare-gas data in the Schultz and Kruse (1989) data base were used to calculate U,Th-He gas-retention ages. Most H- and LL-chondrite ages are high; ~81% are >2.2 Ga. In contrast, most L-chondrite ages are low; ~69% are ≤2.2 Ga, and ~35% are ≤0.9 Ga. The latter fraction is substantially lower than the value of 44% given by Heymann (1967). The difference is attributed to the preferential inclusion of shocked L chondrites in early studies. Broad age peaks in the H and LL groups near 3.4 Ga probably reflect thermal loss during metamorphism, but in the H distribution there is a hint of minor outgassing “events” near 1 Ga. The L/LL chondrites have chemical properties intermediate between and unresolvable from L and LL chondrites. The high ages of most L/LL chondrites are evidence against these originating on the L parent body; the L/LL age distribution is consistent with an origin on the LL parent body or on an independent body.  相似文献   

13.
Abstract— The thermal metamorphism grade of organic matter (OM) trapped in 6 unequilibrated ordinary chondrites (UOCs) (Semarkona [LL 3.0], Bishunpur [L/LL 3.1], Krymka [LL 3.1], Chainpur [LL 3.4], Inman [L/LL 3.4], and Tieschitz [H/L 3.6]) has been investigated with Raman spectroscopy in the region of the first‐order carbon bands. The carbonaceous chondrite Renazzo (CR2) was also investigated and used as a reference object for comparison, owing to the fact that previous studies pointed to the OM in this meteorite as being the most pristine among all chondrites. The results show that the OM thermal metamorphic grade: 1) follows the hierarchy Renazzo << Semarkona << other UOCs; 2) is well correlated to the petrographic type of the studied objects; and 3) is also well correlated with the isotopic enrichment δ15N. These results are strikingly consistent with earlier cosmochemical studies, in particular, the scenario proposed by Alexander et al. (1998). Thermal metamorphism in the parent body appears as the main evolution process of OM in UOCs, demonstrating that nebular heating was extremely weak and that OM burial results in the destabilization of an initial isotopic composition with high δD and δ15N. Furthermore, the clear discrimination between Renazzo, Semarkona, and other UOCs shows: 1) Semarkona is a very peculiar UOC—by far the most pristine; and 2) Raman spectroscopy is a valid and valuable tool for deriving petrographic sub‐types (especially the low ones) that should be used in the future to complement current techniques. We compare our results with other current techniques, namely, induced thermo‐luminescence and opaques petrography. Other results have been obtained. First, humic coals are not strictly valid standard materials for meteoritic OM but are helpful in the study of evolutionary trends due to thermal metamorphism. Second, terrestrial weathering has a huge effect on OM structure, particularly in Inman, which is a find. Finally, the earlier statement that fine‐grained chondrule rims and matrix in Semarkona could be the source of smectite‐rich IDPs is not valid, given the different degree of structural order of their OM.  相似文献   

14.
Abstract— Olivine grains from selected meteorites (the Springwater pallasite, the Lowicz mesosiderite, the ALH 84025 brachinite, the Krymka LL3 chondrite, and the Calcalong Creek lunar meteorite) and terrestrial rocks (San Carlos forsterite and Rockport fayalite) were studied by optical microscopy and high-precision electron microprobe analysis. Detailed microprobe traverses revealed regular igneous zoning in the Krymka and Calcalong Creek olivines. Traverses across the San Carlos forsterite grain are flat and display no chemical variations larger than the 2σ range of counting error (±0.2 mol% Fa). Traverses across olivine grains in the ALH 84025, Lowicz, and Springwater meteorites show regular patterns of periodic or wavy chemical variations well exceeding the 2σ uncertainty range. However, no lamellar structure was seen in backscattered electron images. It is suggested that the periodic chemical variations may be due to spinodal decomposition of primary, more or less homogeneous grains. I conclude that the absence of earlier reports of such variations simply means that olivine grains in equilibrated meteorites have not been examined closely enough to detect them.  相似文献   

15.
Twenty-six of the fifty-seven stone meteorites listed in Huss (1979) from Roosevelt County, New Mexico, have been classified in the present study. Microprobe analyses indicate 15 H type, 9 L type and 2 LL type chondrites. Based on compositional, textural, and locational comparisons, as many as 10 chondrites may be paired to three distinct falls.  相似文献   

16.
The chemical composition of the newly observed fallen chondrites Parambù, 1967, and Marilia, 1971, was determined. Wet chemical methods were used for major elements analyses and the abundances of heavy trace elements from tungsten to uranium were determined by spark source mass spectrometry. The chemical composition confirmed the classification of Marilia as an H-group chondrite by Avanzo et al. (1973): Parambù was classified as an LL-group chondrite.  相似文献   

17.
Abstract— Modal mineralogies of individual, equilibrated (petrologic type 4–6 L and LL chondrites have been measured using an electron microprobe mapping technique, and the chemical compositions of coexisting silicate minerals have been analyzed. Progressive changes in the relative abundances and in the molar Fe/Mn and Fe/Mg ratios of olivine, low‐Ca pyroxene, and diopside occur with increasing metamorphic grade. Variations in olivine/low‐Ca pyroxene ratios (Ol/Px) and in metal abundances and compositions with petrologic type support the hypothesis that oxidation of metallic iron accompanied thermal metamorphism in ordinary chondrites. Modal Ol/Px ratios are systematically lower than normative Ol/Px ratios for the same meteorites, suggesting that the commonly used C.I.P.W. norm calculation procedure may not adequately estimate silicate mineral abundances in reduced chondrites. Ol/Px ratios calculated from visible and near‐infrared (VISNIR) reflectance spectra of the same meteorites are not in agreement with other Ol/Px determinations, possibly because of spectral complexities arising from other minerals in chondrites. Characteristic features in VISNIR spectra are sensitive to the proportions and compositions of olivine and pyroxenes, the minerals most affected by oxidative metamorphism. This work may allow spectral calibration for the determination of mineralogy and petrologic type, and thus may be useful for spectroscopic studies of asteroids.  相似文献   

18.
We have analysed three Indian meteorites — Bansur, Udaipur and Madhipura — for the elemental and isotopic composition of Ne, Ar, Kr and Xe and determined their radiation and gas-retention ages. It is found that Udaipur belongs to the group of unequilibrated ordinary chondrites and Madhipura probably belongs to the group of shocked hypersthene chondrites.  相似文献   

19.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

20.
Abstract— The Meteoritical Bulletin No. 80 lists data for 178 meteorites. Noteworthy are 3 HED meteorites (ALH 88102, Hammadah al Hamra (HaH) 059, and Monticello); 3 ureilites (HaH 064, HaH 126, and Dar al Gani (DaG) 084); 4 irons (Baygorria (IAB), Ste. Croix (IIIAB), Sargiin Gobi (IAB), and Tarahumara (IIE)); an unusual metal-rich meteorite (Vermillion); 8 carbonaceous chondrites (HaH 043 (C03), HaH 073 (C4), DaG 055 (C3) and 5 C03 chondrites (probably paired) from DaG); an R chondrite (DaG 013); and 6 unequilibrated ordinary chondrites (ALH 88105 (L3), Camel Donga 016 (L3), HaH 093 (LL3.9), HaH 096 (LL(L)3), Richfield (LL3.7), and Sarir Quattusah (LL(L)3)). Three recent falls of ordinary chondrites (Coleman (LL5), St. Robert (H5), and Tsukuba (H5-6)) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号