首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New multichannel seismic reflection data provide information on the stratigraphic framework and geologic history of the forearc basin west of central Sumatra. We recognize six seismic-stratigraphic sequences that reflect the Cenozoic history and development of the outer continental shelf and forearc basin southeast of Nias Island. These sequences indicate several episodes of uplift of the subduction complex and filling of the forearc basin.Early in the development of this margin, Paleogene slope deposits prograded onto the adjacent basin floor. Onlapping this assemblage are two units interpreted as younger Paleogene(?) trough deposits. Uplift associated with rejuvenation of subduction in the late Oligocene led to erosion of the Sumatra shelf and formation of a regional unconformity.The early Miocene was a period of significant progradation. A Miocene limestone unit partly downlaps and partly onlaps the older Paleogene deposits. It is characterized by shallow shelf and oblique progradational facies passing into basin floor facies. A buried reef zone occurs near the shelf edge. The cutting of an erosional unconformity on the shelf and slope in late Miocene/early Pliocene time culminated this episode of deposition.In the late Pliocene, a large flexure developed at the western boundary of the basin, displacing the outer-arc ridge upward relative to the basin. Over 1 km of Pliocene to Recent sediment was deposited as a wedge in the deep western portion of the basin landward of the outer-arc ridge. These deposits are characterized by flat-lying, high-amplitude, continuous reflections that overstep the late Miocene unconformity. Up to 800 m of shallow-water limestone have been deposited on the shelf since mid-Pliocene time.  相似文献   

2.
The overriding of the Luzon volcanic arc atop the underlying Chinese rifted‐continental margin has caused the formation of the Taiwan mountain belts and a peripheral foreland basin west of the orogen since the late Miocene. In this study, lithofacies analysis and calcareous nannofossil biostratigraphic investigations of the Dahan River section in northwestern (NW) Taiwan were performed. Our results offer insights into the temporal evolution of the sedimentary environments and the competing effects of the sedimentation and basin tectonics of the NW Taiwan foreland basin from the Pliocene to early Pleistocene. Nannofossil biostratigraphic studies showed that the upper Kueichulin Formation and the overlying Chinshui Shale can be assigned to the NN15 biozone of the Pliocene age, and the Cholan Formation pertains to NN16–NN18 of the early Pleistocene. The NN15–NN16 boundary coincides roughly with the boundary of the Chinshui Shale and Cholan Formation. We recognized three major sedimentary environments in the studied foreland succession comprising the upper Kueichulin Formation, Chinshui Shale, Cholan Formation and Yangmei Formation, in ascending order. During the deposition of the upper Kueichulin Formation in the early Pliocene, the dominant environment was a wave‐ and tide‐influenced open marine setting. During the late Pliocene, the environment deepened to an outer‐offshore setting when the sediments of Chinshui Shale were accumulated. In the Pleistocene, the environment then shallowed to wave‐dominated estuaries during the deposition of the lower Cholan Formation, and the basin was rapidly filled, generating a meandering and sandy braided river environment during the deposition of the upper Cholan to the Yangmei Formation. In summary, the evolution of sedimentary environments in the studied succession shows a deepening then a shallowing and coarsening upward trend during the period from the Pliocene to the Pleistocene, spanning the age from approximately 4 to 1 Ma.  相似文献   

3.
The Late Pleistocene sea-level history of Antarctica is key to understanding and predicting the responses of icesheets, which significantly contribute to the global sea level, to changing climates. Coastal sediments at Lützow-Holm Bay, East Antarctica, have yielded radiocarbon ages of Holocene and Marine Oxygen Isotope Stage (MIS) 3 from deposits above the present sea level, suggesting that there have been two episodes of sea-level highstand. However, radiocarbon dating is likely to be less accurate for dating sediments close to or older than 40–50 ka, the upper limit of its application. We thus explored the applicability of luminescence dating to coastal sediments newly sampled from Langhovde on the eastern coast of Lützow-Holm Bay. Samples were collected from a trench <1 m deep and at several meters above the present sea level. Quartz coarse and fine grains, K-feldspar coarse grains, and polymineral fine grains were extracted from the samples. Quartz coarse and fine grains both showed very low optically stimulated luminescence sensitivity and no fast component and thus were not considered further. Dose-recovery tests on post-infrared infrared-stimulated luminescence (post-IR IRSL) signals of K-feldspar and polymineral grains yielded variable results and suggested acceptable measurement conditions for each grain size fraction and expected equivalent dose. Preliminary measurements revealed that the trench section can be divided into the upper and lower layers, corresponding to the Holocene and MIS 7, respectively. Further application of post-IR IRSL dating to coastal sediments, including to previously radiocarbon-dated sections, could refine our understanding of the late Quaternary relative sea-level history in East Antarctica.  相似文献   

4.
Activities of 26Al and 10Be in five chert clasts sampled from two beach ridges of late Pleistocene Lake Lisan, precursor of the Dead Sea in southern Israel, indicate low rates of chert bedrock erosion and complex exposure, burial, and by inference, transport histories. The chert clasts were derived from the Senonian Mishash Formation, a chert‐bearing chalk, which is widely exposed in the Nahal Zin drainage basin, the drainage system that supplied most of the material to the beach ridges. Simple exposure ages, assuming only exposure at the beach ridge sampling sites, range from 35 to 354 ky; using the ratio 26Al/10Be, total clast histories range from 0·46 to 4·3 My, unrelated to the clasts' current position and exposure period on the late Pleistocene beach ridges, 160–177 m below sea level. Optically stimulated luminescence dating of fine sediments from the same and nearby beach ridges yielded ages of 20·0 ± 1·4 ka and 36·1 ± 3·3 ka. These ages are supported by the degree of soil development on the beach ridges and correspond well with previously determined ages of Lake Lisan, which suggest that the lake reached its highest stand around 27 000 cal. years BP . If the clasts were exposed only once and than buried beyond the range of significant cosmogenic nuclide production, then the minimum initial exposure and the total burial times before delivery to the beach ridge are in the ranges 50–1300 ky and 390–3130 ky respectively. Alternatively, the initial cosmogenic dosing could have occurred during steady erosion of the source bedrock. Back calculating such rates of rock erosion suggests values between 0·4 and 12 m My?1. The relatively long burial periods indicate extended sediment storage as colluvium on slopes and/or as alluvial deposits in river terraces. Some clasts may have been stored for long periods in abandoned Pliocene and early Pleistocene routes of Nahal Zin to the Mediterranean before being transported again back into the Nahal Zin drainage system and washed on to the shores of Lake Lisan during the late Pleistocene. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene‐Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193 ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4–3) at a mean accumulation rate of 0·22 m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4–2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24 m/ka. This co‐accumulation indicates that gullies have been a long‐term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2 m/ka near the hills to 1–0·4 m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man‐made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Quaternary sedimentation in the Moshaweng dry valley of southeastern Botswana is evaluated on the basis of geomorphological evolution and sedimentological analyses. Stratigraphic evidence reveals an upper surface (1095 m) containing abundant sil‐calcrete, an intermediate surface (1085 m) in which sil‐calcrete underlies nodular calcrete and lower (1075 m) surface in which sil‐calcrete and nodular calcrete are interbedded. This subdivision is reflected in the geochemical composition of the sediments which show an overall trend of decreasing SiO2 content (and increasing CaCO3 content) with depth from the highest to the lowest surface levels. The calcretes and sil‐calcretes represent modifications of pre‐existing detrital Kalahari Group sand and basal Kalahari pebbles which thinned over a Karoo bedrock high. Modification took place during wet periods when abundant Ca++‐rich groundwater flowed along the structurally aligned valley system. With the onset of drier conditions, water table fluctuations led to the precipitation of nodular calcretes in the phreatic layer to a depth of about 20 m. A major geochemical change resulted in the preferential silicification of the nodular calcrete deposits. Conditions for silica mobilization may be related to drying‐induced salinity and in situ geochemical differentiation brought about by pebble dissociation towards the top of the sediment pile. As calcretization and valley formation progressed to lower levels, silica release took place on a diminishing scale. Thermoluminescence dating infers a mid‐Pleistocene age for sil‐calcrete formation suggesting that valley evolution and original calcrete precipitation are much older. Late stage dissolution of CaCO3 from pre‐existing surface calcretes or sil‐calcretes led to the formation of pedogenic case‐hardened deposits during a time of reduced flow through the Moshaweng system possibly during the upper or late Pleistocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Optically stimulated luminescence (OSL) dating is now commonly used to estimate the depositional age of Quaternary landforms along the southern Cape coast of South Africa. Due to the early onset of dose saturation in the quartz-rich sediments from this region, determining the age of deposits much older than the last three glacio-eustatic sea-level high stands has been a challenge. In this study, we explored the feasibility of using the thermally-transferred OSL (TT-OSL) dating method to obtain ages for aeolian and shallow marine deposits at three different localities that hold promise to further illuminate the long and complex Late Quaternary sea-level history of this region. The bleachability and behaviour of both the recuperated OSL (ReOSL) and the basic-transferred OSL (BT-OSL) signals were investigated, and used as independent chronometers to infer (a) the degree of bleaching of the sediments and (b) the stability of the ReOSL signal for dating of older samples. We examined the sensitivity of both signals to varying preheat temperatures and further developed the single-aliquot regenerative-dose procedure for TT-OSL dating of our samples. To verify our procedures, and to understand some of the underlying mechanisms responsible for the problems we observed, modern analogues and known-age Marine Isotope Sub-stage (MIS) 5e samples from the same localities were also measured. The Middle Pleistocene deposits investigated in this study produced statistically consistent ReOSL and BT-OSL ages compatible with sea-level high stands during Marine Isotope Stage 11. This result is of considerable significance, as it may yield new insights into maximum sea-level heights during this period, which is widely considered an appropriate analogue for future environmental conditions.  相似文献   

9.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

10.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Multiple-centres electron spin resonance (MC-ESR) dating of quartz grains has been commonly applied to fluvial and lacustrine deposits and can provide a precise chronological framework for depositional histories. However, the reliability of this method for quartz grains obtained from sediments of boreholes, which are usually deposited continuously and record information regarding basin evolution and climate change, has not yet been assessed. In this study, we have initially applied the MC-ESR dating method to borehole sediments from the Zhoulao core (ZLC), located in the depocenter of the Jianghan Basin, middle Yangtze River, China. Dating of quartz grains from the ZLC using MC-ESR yields estimated ages that are generally consistent with the established paleomagnetic chronological framework. For Middle Pleistocene samples (i.e., 0.7–0.3 Ma), the Ti–Li centre provides more accurate ages than those of Al centre, which are overestimated. For Early Pleistocene samples (i.e., 2.3–0.8 Ma), both the Al centre and Ti–Li centre give highly consistent estimate ages, indicating that this is a favorable dating range for MC-ESR. Overall, the Al centre shows promise for dating Pliocene samples, whereas the Ti–Li centre is more suitable for Middle-Early Pleistocene (2.3–0.3 Ma) sediments. In addition, the deposition rate of depth <170 m in the ZLC is greater than those of depth >170 m sediments; however, the specific tectonic, climatic, or geomorphic mechanism for this change in sedimentation rate is still unclear.  相似文献   

12.
Tanna island is part of a large volcanic complex mainly subsided below sea-level. On-land, two series of hydroclastic deposits and ignimbrites overlie the subaerial remains of a basal, mainly effusive volcano. The ‘Older’ Tanna Ignimbrite series (OTI), Late Pliocene or Pleistocene in age, consists of ash flows and ash- and scoria-flow deposits associated with fallout tephra layers, overlain by indurated pumice-flow deposits. Phreatomagmatic features are a constant characteristic of these tuffs. The ‘younger’ Late Pleistocene pyroclastics, the Siwi sequence, show basal phreatomagmatic deposits overlain by two successive flow units, each comprising a densely welded layer and a nonwelded ash-flow deposit. Whole-rock analyses of 17 juvenile clasts from the two sequences (vitric blocks from the phreatomagmatic deposits, welded blocks, scoriaceous bombs and pumices from the ignimbrites) show basaltic andesite and andesite compositions (SiO2=53–60%). In addition, 296 microprobe analyses of glasses in these clasts show a wide compositional range from 51 to 69% SiO2. Dominant compositions at ∼54, 56, 58.5 and 61–62% SiO2 characterize the glass from the OTI. Glass compositions in the lower – phreatomagmatic – deposits from the Siwi sequence also show multimodal distribution, with peaks at SiO2=55, 57.5, 61–62 and 64% whereas the upper ignimbrite has a predominant composition at 61–62% SiO2. In both cases, mineralogical data and crystal fractionation models suggest that these compositions represent the magmatic signature of a voluminous layered chamber, the compositional gradient of which is the result of fractional crystallization. During two major eruptive stages, probably related to two caldera collapses, the OTI and Siwi ignimbrites represent large outpourings from these magmatic reservoirs. The successive eruptive dynamics, from phreatomagmatic to Plinian, emphasize the role of water in initiating the eruptions, without which the mafic and intermediate magmas probably would not have erupted. Received: February 19, 1993/Accepted October 10, 1993  相似文献   

13.
The upland planation surface in the Piedmont of central New Jersey consists of summit flats, as much as 130 km2 in area, that truncate bedding and structure in diabase, basalt, sandstone, mudstone and gneiss. These flats define a low‐relief regional surface that corresponds in elevation to residual hills in the adjacent Coastal Plain capped by a fluvial gravel of late Miocene age. A Pliocene fluvial sand is inset 50 m below the upland features. These associations suggest a late Miocene or early Pliocene age for the surface. To assess exposure age and erosional history, a 4·4 m core of clayey diabase saprolite on a 3 km2 remnant of the surface was sampled at six depths for atmospherically produced cosmogenic 10Be. The measured inventory, assuming a deposition rate of 1·3 × 106 atoms cm−2 a−1, yields a minimum exposure age of 227 000 years, or, assuming continuous surface erosion, a constant erosion rate of 10 m Ma−1. Because the sample site lies about 60 m above the aggradation surface of the Pliocene fluvial deposit, and itself supports a pre‐Pliocene fluvial gravel lag, this erosion rate is too high. Rather, episodic surface erosion and runoff bypassing probably have produced an inventory deficit. Reasonable estimates of surface erosion (up to 10 m) and bypassing (up to 50 per cent of total precipitation) yield exposure ages of as much as 6·4 Ma. These results indicate that (1) the surface is probably of pre‐Pleistocene age and has been modified by Pleistocene erosion, and (2) exposure ages based on 10Be inventories are highly sensitive to surface erosion and runoff bypassing. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Hiroki Hayashi 《Island Arc》2004,13(1):318-331
Abstract The present paper describes the general outline of Neogene paleoceanographic changes in the northwestern Pacific by means of planktonic foraminiferal assemblages. Planktonic foraminiferal fossils occur commonly in the upper Miocene to lower Pleistocene sediments of Hole 1151A, Ocean Drilling Program Leg 186 in the forearc basin off northeast Japan, with the exception of 11 barren intervals. These barren intervals are explained as a result of dissolution under organic decomposing processes. Three assemblages of planktonic foraminifers were identified by Q‐mode cluster analysis. The succession of the assemblages can be divided into four paleoceanographic stages: (i) warm‐temperate Tortonian; (ii) cold‐temperate Messinian to lower Pliocene; (iii) warm climatic optimum in the middle part of the Pliocene; and (iv) strong glacial–interglacial oscillation of the upper Pliocene to the lower Pleistocene. Three short warming events—namely, the late Miocene climatic optimum 3, the Miocene–Pliocene boundary and the middle Pliocene events—and a short cooling event of the late Miocene could be determined in the studied section of Site 1151.  相似文献   

15.
Sections up to 3·5 m deep cut through the upper rectilinear segment of relict, vegetated talus slopes at the foot of the Trotternish escarpment reveal stacked debris-flow deposits intercalated with occasional slopewash horizons and buried organic soils. Radiocarbon dating of buried soil horizons indicates that reworking of sediment by debris flows predates 5·9–5·6 Cal ka BP , and has been intermittently active throughout the late Holocene. Particle size analyses of 18 bulk samples from these units indicates that c. 27–30 per cent of the talus deposit is composed of fine (<2 mm) sediment. Sedimentological comparison with tills excludes a glacigenic origin for the talus debris, and the angularity of constituent clasts suggests that in situ weathering has been insignificant in generating fine material. We conclude that the fine sediment within the talus is derived primarily by granular weathering of the rockwall, with syndepositional accumulation of both fine and coarse debris, implying that c. 27–30 per cent of rockwall retreat since deglaciation reflects granular weathering rather than rockfall. The abundance of fines within the talus deposits is inferred to have been of critical importance in facilitating build-up of porewater pressures during rainstorms, leading to episodic failure and flow of debris on the upper parts of the slope. A wider implication of these findings is that the mechanical properties of talus slopes cannot be regarded as those of free-draining accumulations of coarse clasts, and that models that treat talus slopes as such have limited value in explaining their form and evolution. Our findings lend support to models that envisage the upper straight slope on talus accumulations as the product of mass-transport as well as rockfall, and indicate that episodic debris flow has been the primary agent of mass-transport at this site. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
We use three different approaches of optically stimulated luminescence (OSL) to study young fluvial sediments located at the main channels of one of the largest fluvial systems of North America: the Usumacinta–Grijalva. We use the pulsed photo‐stimulated luminescence (PPSL) system also known as portable OSL reader, full OSL dating and profiling OSL dating in samples extracted from vertical sediment profiles (n = 9) of riverbanks to detect changes in depositional rates of sediments and to obtain the age of the deposits. The results of the PPSL system show that the luminescence signals of vertical sediment profiles highly scattered from the top to the bottom contrast with the luminescence pattern observed on well‐reset sequences of fluvial deposits where luminescence increase from the top to the bottom of the profile. The profiling and full OSL ages yielded large uncertainty values on their ages. Based on the inconsistencies observed in both ages and luminescence patterns of profiles we suggest that these fluvial deposits were not fully reset during their transport. As an explanation, we propose that in the Usumacinta and Grijalva rivers the cyclonic storms during the wet season promote the entrainment of large volumes of sediments due to high‐erosional episodes around the basin resulting from hyper‐concentrated and turbid flows. We conclude that the PPSL, profiling and full OSL dating of sediments are useful tools to quantify and to assess the depositional patterns in fluvial settings during the Holocene. These techniques also can yield information about sites where increases in the sediment load of rivers may produce poorly resetting of grains affecting the results of OSL dating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The present study focuses on the morphotectonic evolution of the axial portion of the Southern Apennine chain between the lower Calore River valley and the northern Camposauro mountain front (Campania Region). A multidisciplinary approach was used, including geomorphological, field‐geology, stratigraphical, morphotectonic, structural, 40Ar/39Ar and tephrostratigraphical data. Results indicate that, from the Lower Pleistocene onwards, this sector of the chain was affected by extensional tectonics responsible for the onset of the sedimentation of Quaternary fluvial, alluvial fan and slope deposits. Fault systems are mainly composed of NW‐SE, NE–SW and W‐E trending strike‐slip and normal faults, associated to NW‐SE and NE–SW oriented extensions. Fault scarps, stratigraphical and structural data and morphotectonic indicators suggest that these faults affected the wide piedmont area of the northern Camposauro mountain front in the Lower Pleistocene–Upper Pleistocene time span. Faults affected both the oldest Quaternary slope deposits (Laiano Synthem, Lower Pleistocene) and the overlying alluvial fan system deposits constrained between the late Middle Pleistocene and the Holocene. The latter are geomorphologically and chrono‐stratigraphically grouped into four generations, I generation: late Middle Pleistocene–early Upper Pleistocene, with tephra layers 40Ar/39Ar dated to 158±6 and 113±7 ka; II generation: Upper Pleistocene, with tephra layers correlated with the Campanian Ignimbrite (39 ka) and with the slightly older Campi Flegrei activity (40Ar/39Ar age 48±7 ka); III generation: late Upper Pleistocene–Lower Holocene, with tephra layers correlated with the Neapolitan Yellow Tuff (~15 ka); IV generation: Holocene in age. The evolution of the first three generations was controlled by Middle Pleistocene extensional tectonics, while Holocene fans do not show evidence of tectonic activity. Nevertheless, considering the moderate to high magnitude historical seismicity of the study area, we cannot rule out that some of the recognized faults may still be active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
The most extensive terrestrial outcrops of glacial and glaciomarine deposits in the Eastern Canadian Arctic are exposed in sea cliffs along the Clyde Foreland and Qivitu Peninsula of Baffin Island. Collectively known as the Clyde Foreland Formation (CFF), these stacked deposits record at least seven glacial advances. Despite having been the focus of numerous investigations spanning nearly 50 years, no numerical chronological framework for the age of the deposits has been established. Previous studies relied on biostratigraphy and amino acid racemization (AAR) geochronology and postulated that the oldest units were Late Pliocene to Mid-Pleistocene in age. In this paper, we use a cosmogenic radionuclide isochron approach to determine a minimum age for the burial of a paleosol preserved within the CFF. Abundant palynomorphs in the paleosol are dominated by cool-climate taxa. Combining the paleosol burial age with a compilation of published and new CFF AAR data for marine bivalves Hiatella arctica and Mya truncata, we statistically define seven CFF aminozones and develop a piecewise isoleucine AAR calibration model for Baffin Island. From this, we estimate the minimum age of each aminozone, although the propagation of errors through all calculations produces large uncertainties for each age estimate. The youngest three CFF units, known as the Kogalu, Kuvinilk, and Cape Christian members, were most likely deposited during glaciations in the Mid- to Late-Pleistocene. The paleosol formed prior to 1.15 ± 0.20 Ma, and the underlying aminozones represent sedimentation during Early Pleistocene or latest Pliocene glaciations and record early advances of Laurentide ice across Baffin Island.  相似文献   

19.
Cosmogenic exposure dating of moraines during the last two decades has vastly improved knowledge on the timing of glaciation worldwide. Due to a variety of geologic complications, such as moraine degradation, snow cover, bedrock erosion and isotopic inheritance, samples from multiple large boulders (>1–2 m) often lead to the most accurate moraine age assignments. However, in many cases, large boulders are not available on moraines of interest. Here, I test the suitability of pebble collections from moraine crest surfaces as a sample type for exposure dating. Twenty-two 10Be ages from two Pleistocene lateral moraine crests in Pine Creek valley in the upper Arkansas River basin, Colorado, were calculated from both pebble and boulder samples. Ten 10Be ages from a single-crested Bull Lake lateral moraine range between 3 and 72 ka, with no statistical difference between pebble (n = 5) and boulder (n = 5) ages. The lack of a cluster of 10Be ages suggests that moraine degradation has led to anomalously young exposure ages. Twelve 10Be ages from a single-crested Pinedale lateral moraine have a bimodal age distribution; one mode is 22.0 ± 1.4 ka (three boulders, two pebble collections), the other is 15.2 ± 0.9 ka (two boulders, five pebble collections). The interpretation of the two age modes is that two glacier maxima of similar extent were attained during the late Pleistocene. Regardless of moraine age interpretations, that 10Be ages from pebble collections and boulders are indistinguishable on moraines of two different ages, and in two different age modes of the Pinedale moraine, suggests that pebble collections from moraine crests may serve as a suitable sample type in some settings.  相似文献   

20.
Marine and eolian carbonate deposits, grouped under the name “Tamala Limestone”, have been investigated along thousands of kilometers of coastal Western Australia (WA). Relative-age diagenetic features of carbonate sand dunes or “eolianites” indicate that coastal ridges decrease in age seaward, reflecting coastal accretion during successive sea-level stands. Yellow- to red-stained quartz sands are associated with eolianites as pits, lenses, extensive beds, and even 40-m-high dunes.A regional survey using whole-rock and land snail amino acid epimerization geochronology confirms the eolianite succession and provides a means of correlating widespread deposits along a steep climatic gradient and 16° of latitude. AMS 14C and uranium–thorium (U/Th) ages provide independent radiometric calibration of the amino acid ratios, and eolianite ages can be estimated using a parabolic kinetic model.Over 90% of the sampled eolianite deposits comprise Aminozones A, C, E (125 ka), F?, G, and H, and correlate with interglacials from <10 ka (Holocene) to ca. 500 ka. In contrast, at the type locality of the Tamala Limestone along the Zuytdorp Cliffs, the upper eolianite-paleosol units are characterized by advanced stages of cavernous weathering, pedogenesis, and recrystallization. In the same units, sediment and snail samples generally yield very low or non-detectable levels of amino acids. These factors along with the stratigraphic complexity of the deposits reflect an age much greater than a large majority of sites along the WA coastline. These findings encourage a revision of the existing classification and nomenclature of Quaternary carbonate deposits in WA, as well as a reexamination of the underlying mechanisms related to the formation and emplacement of both carbonate and quartz dunes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号