共查询到5条相似文献,搜索用时 15 毫秒
1.
Scoria cone eruptions are generally modeled as a simple succession from explosive eruption to form the cone to passive effusion of lava, generally from the base of the cone. Sector collapse of scoria cones, wherein parts of the cone are rafted on a lava flow, is increasingly recognized as common, but the reasons that a cone may not be rebuilt are poorly understood. 相似文献
2.
Two‐dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones
The temporal evolution of simple landforms such as cinder cones by nonlinear diffusive processes is studied through the use of a new 2D numerical model using well‐established and accurate numerical mathematics and high‐resolution digital elevation models (DEMs). Extending 1D (profile) nonlinear diffusion analyses used in cinder cone, hillslope and fault scarp evolution studies, we have implemented a 2D numerical model with a spatially and temporally varying sediment transport rate coefficient scaled nonlinearly by the ratio of local slope to critical slope. The high accuracy and efficient numerical implementation are documented in the paper and the MATLAB toolkit developed is used to solve for the developmentof an initial 2D cone form. First, we examine the nonlinear transport rule and suggest a refinement that accounts explicitly for flux at threshold slopes. We find that the maximum diffusion (necessarily introduced in the numerical model to avoid infinite rates) at the critical slope controls the final morphology, especially approaching steady state. Secondly, solving the landscape evolution problem in 2D enables a natural accounting for sediment flux convergence or divergence in the profile. Thirdly, the boundary behavior of a given landscape element controls much of what happens in that domain and so we allow for arbitrary flux magnitude or elevation boundary conditions. Fourthly, landscapes are heterogeneous in their surface cover and so we allow for spatially and temporally varying transport rate k and we permit an arbitrary vertical displacement field within the model domain. To test the new formulation for the nonlinear term, the effect of variable diffusivity k and the numerical schemes implemented, we apply the model to cinder cones built on the flanks of Mount Etna in 2001 and 2002–2003. We explore the effects of DEM resolution with data from the 2001 cone and the utility of spatially variable diffusivity to explain the variation in erosion measured by differencing repeat light detection and ranging (LIDAR) surveys gathered in 2004 and 2007 over the 2002–2003 cone complex. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
The influence of climate and microclimate (aspect) on soil creep efficiency: Cinder cone morphology and evolution along the eastern Mediterranean Golan Heights 下载免费PDF全文
Although hillslope evolution has been subject to much investigation for more than a century, the effect of climate on the morphology of soil‐mantled hillslopes remains poorly constrained. In this study, we perform numerical simulations of volcanic cinder cones in the Golan Heights (eastern Mediterranean) to estimate soil transport efficiency across a significant north–south gradient in mean annual precipitation (1100 to 500 mm). We use the initial cinder cone morphology (constrained by stratigraphy), the modern hillslope form (surveyed with sub‐meter accuracy) and the eruption age (based on 40Ar–39Ar chronology) to predict the best‐fit value of the soil transport coefficient (‘diffusivity’) based on a nonlinear transport model. Our results indicate that the best‐fit diffusivity (K ) varies from 1 to 6 m2 ka?1 among the five cinder cones in our field area. Diffusivity (K ) values vary systematically with precipitation and hillslope aspect; specifically, K is higher on south‐facing (drier) hillslopes and decreases with mean annual precipitation. We interpret this climate dependency to reflect vegetation‐driven variations in apparent soil cohesion, which increases with root network density, and attenuation of rain splash and overland flow erosion, which increases with vegetative ground cover. To assess how vegetative root mass and ground cover vary with precipitation and aspect, we quantified the spatial distribution of NDVI (normalized difference vegetation index) from ASTER satellite images and observed spatial variations that correlate with our calibrated values of K . Analysis of previously studied cinder cones in the USA can be used to extend our framework to arid domains. This endeavor suggests a humped relationship between K and precipitation with maximum diffusivity at mean annual precipitation of 400–600 mm. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
4.
海啸传播模型与数值模拟研究进展 总被引:1,自引:0,他引:1
海啸在浅水大陆架的传播问题由于其非线性作用和浅水效应而变得十分复杂,然而目前成熟的海啸传播理论及数值模拟结果在这方面与实际并不一致.本文比较分析了可用来模拟大陆架海啸传播的浅水波模型和数值方法,并提出对我国东海陆架边缘可能发生的近海海啸需要开展数值试验研究. 相似文献
5.
Univariate and multivariate stress release models are fitted to historical earthquake data from North China. It is shown that a better fit is obtained by treating separately the Eastern part of the region, including the North China Plain and Bohai Sea, and the Western part of the region, including the Ordos Plateau and its Eastern boundary. Further improvement is obtained by fitting the large events (M7.6) and smaller events in the Western region by different stress release models. The comparisons are made by computing the likelihoods of the fitted models and discounting the number of parameters used by Akaike's AIC criterion. The models are used to develop long-term risk scenarios for the East and West regions. 相似文献