首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Kula volcanic field in Western Turkey comprises about 80 cinder cones and associated basaltic lava flows of Quaternary age. Based on geomorphological criteria and K-Ar dating, three eruption phases, β2–β4, were distinguished in previous studies. Human footprints in ash deposits document that the early inhabitants of Anatolia were affected by the volcanic eruptions, but the age of the footprints has been poorly constrained. Here we use 3He and 10Be exposure dating of olivine phenocrysts and quartz-bearing xenoliths to determine the age of the youngest lava flows and cinder cones. In the western part of the volcanic field, two basalt samples from a 15-km-long block lava flow yielded 3He ages of 1.5 ± 0.3 ka and 2.5 ± 0.4 ka, respectively, with the latter being in good agreement with a 10Be age of 2.4 ± 0.3 ka for an augen gneiss xenolith from the same flow. A few kilometers farther north, a metasedimentary xenolith from the top of the cinder cone Çakallar Tepe gave a 10Be age of 11.2 ± 1.1 ka, which dates the last eruption of this cone and also the human footprints in the related ash deposits. In the center of the volcanic field, a basalt sample and a metasedimentary xenolith from another cinder cone gave consistent 3He and 10Be ages of 2.6 ± 0.4 ka and 2.6 ± 0.3 ka, respectively. Two β4 lava flows in the central and eastern part of the volcanic province yielded 3He ages of 3.3 ± 0.4 ka and 0.9 ± 0.2 ka, respectively. Finally, a relatively well-preserved β3 flow gave a 3He age of ∼13 ka. Taken together, our results demonstrate that the penultimate eruption phase β3 in the Kula volcanic field continued until ∼11 ka, whereas the youngest phase β4 started less than four thousand years ago and may continue in the future.  相似文献   

3.
Volcanic eruptions typically produce a number of hazards, and many regions are at risk from more than one volcano or volcanic field. So that detailed risk assessments can be carried out, it is necessary to rank potential volcanic hazards and events in terms of risk. As it is often difficult to make accurate predictions regarding the characteristics of future eruptions, a method for ranking hazards and events has been developed that does not rely on precise values. Risk is calculated individually for each hazard from each source as the product of likelihood, extent and effect, based on the parameters order of magnitude. So that multiple events and outcomes can be considered, risk is further multiplied by the relative probability of the event occurring (probabilitye) and the relative importance of the outcome (importanceo). By adding the values obtained, total risk is calculated and a ranking can be carried out.This method was used to rank volcanic hazards and events that may impact the Auckland Region, New Zealand. Auckland is at risk from the Auckland volcanic field, Okataina volcanic centre, Taupo volcano, Tuhua volcano, Tongariro volcanic centre, and Mt. Taranaki volcano. Relative probabilities were determined for each event, with the highest given to Mt. Taranaki. Hazards considered were, for local events: tephra fall, scoria fall and ballistic impacts, lava flow, base surge and associated shock waves, tsunami, volcanic gases and acid rain, earthquakes and ground deformation, mudflows and mudfills, lightning and flooding; and for distal events: tephra fall, pyroclastic flows, poisonous gases and acid rain, mudflows and mudfills, climate variations and earthquakes. Hazards from each source were assigned values for likelihood, with the largest for tephra fall from all sources, earthquakes and ground deformation, lava flows, scoria fall and base surge for an Auckland eruption on land, and earthquakes and ground deformation from an Auckland eruption in the ocean. The largest values for extent were for tephra fall and climate variation from each of the distal centres. However, these parameters do not give a true indication of risk. In a companion paper the effect of each hazard is fully investigated and the risk ranking completed.  相似文献   

4.
在野外地质资料基础上,利用火山形态学方法,探讨了大兴安岭焰山、高山火山的喷发型式。结果表明,大兴安岭哈拉哈河-绰尔河火山群中的焰山和高山火山不同于斯通博利式喷发形成的火山,其早期爆破喷发的火山碎屑形成火山渣锥、空降火山碎屑席和小型火山碎屑流,晚期溢出大量熔岩。两火山具有较高大的锥体(标高200~300m以上),在结构上,松散火山砾、火山弹等构成下部的降落锥,熔结集块岩构成上部的溅落锥。由火山砾和火山灰组成的空降火山碎屑席分布在火山锥体周围。两火山溢出的熔岩经历了从结壳熔岩→翻花石→渣状熔岩的演变。根据喷发产物可推断焰山和高山火山具有以下喷发特征:爆破喷发形成持续的喷发柱→斯通博利式喷发→熔岩喷泉喷溢,其中以持续时间较长的喷发柱区别于典型的斯通博利式喷发。类似焰山、高山火山的喷发特征,在龙岗第四纪火山群、镜泊湖全新世火山群中也都有个例,这是中国大陆火山作用中一种新的喷发型式。  相似文献   

5.
Located at the volcanic front in the western Mexican arc, in the Colima Rift, is the active Volcán Colima, which lies on the southern end of the massive (∼450 km3) Colima-Nevado volcanic complex. Along the margins of this andesitic volcanic complex, is a group of 11 scoria cones and associated lavas, which have been dated by the 40Ar/39Ar method. Nine scoria cones erupted ∼1.3 km3 of alkaline magma (basanite, leucite-basanite, minette) between 450 and 60 ka, with >99% between 240 and 60 ka. Two additional cones (both the oldest and calc-alkaline) erupted <0.003 km3 of basalt (0.5 Ma) and <0.003 km3 of basaltic andesite (1.2 Ma), respectively. Cone and lava volumes were estimated with the aid of digital elevation models (DEMs). The eruption rate for these scoria cones and their associated lavas over the last 1.2 Myr is ∼1.2 km3/Myr, which is more than 400 times smaller than that from the andesitic Colima-Nevado edifice. In addition to these alkaline Colima cones, two other potassic basalts erupted at the volcanic front, but ∼200 km to the ESE (near the historically active Volcán Jorullo), and were dated at 1.06 and 0.10 Ma. These potassic suites reflect the tendency in the west-central Mexican arc for magmas close to the volcanic front to be enriched in K2O relative to those farther from the trench.Ferric-ferrous analyses on pristine samples from the alkaline cones adjacent to V. Colima and V. Jorullo indicate that their oxygen fugacities relative to the nickel-nickel oxide buffer are significantly higher (ΔNN0=2–4) than those for the calc-alkaline magma types (0–1.5). These ΔNNO values correlate positively with Ba concentrations and likely reflect the influence of a slab-derived fluid. As a result of the high oxidation states, the solubility of sulfur in these potassic magmas is enhanced. Indeed the sulfur content of both the whole rock and the apatite phenocrysts (and in olivine melt inclusions reported in the literature) suggest that part of their pre-eruptive sulfur gas (SO2) concentrations could have been discharged to the atmosphere in amounts comparable to the 1982 eruption of El Chichón, although over a prolonged period spanning thousands of years (not per eruption).Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan  相似文献   

6.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   

7.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

8.
Pelado, Guespalapa, and Chichinautzin monogenetic scoria cones located within the Sierra del Chichinautzin Volcanic Field (SCVF) at the southern margin of Mexico City were dated by the radiocarbon method at 10,000, 2,800–4,700, and 1,835 years b.p., respectively. Most previous research in this area was concentrated on Xitle scoria cone, whose lavas destroyed and buried the pre-Hispanic town of Cuicuilco around 1,665±35 years b.p. The new dates indicate that the recurrence interval for monogenetic eruptions in the central part of the SCVF and close to the vicinity of Mexico City is <2,500 years. If the entire SCVF is considered, the recurrence interval is <1,700 years. Based on fieldwork and Landsat imagery interpretation a geologic map was produced, morphometric parameters characterizing the cones and lava flows determined, and the areal extent and volumes of erupted products estimated. The longest lava flow was produced by Guespalapa and reached 24 km from its source; total areas covered by lava flows from each eruption range between 54 (Chichinautzin) and 80 km2 (Pelado); and total erupted volumes range between 1 and 2 km3/cone. An average eruption rate for the entire SCVF was estimated at 0.6 km3/1,000 years. These findings are of importance for archaeological as well as volcanic hazards studies in this heavily populated region.Editorial responsibility: J. Gilbert  相似文献   

9.
K–Ar ages of young basalts (<500 ka) are often higher than the actual eruption age, due to low potassium contents and the frequent presence of excess Ar in olivine and pyroxene phenocrysts. Geological studies in the San Francisco and Uinkaret volcanic fields in Arizona have documented the presence of excess 40Ar and have concluded that K–Ar ages of young basalts in these fields tend to be inaccurate. This new study in the San Francisco volcanic field presents 3Hec and 21Nec ages yielded by olivine and pyroxene collected from three Pleistocene basalt flows – the South Sheba (∼190 ka), SP (∼70 ka), and Doney Mountain (∼67 ka) lava flows, – and from one Holocene basalt, the Bonito Lava Flow (∼1.4 ka) at Sunset Crater. These data indicate that, in two of three cases, 40Ar/39Ar and K–Ar ages of the young basalts agree well with cosmic-ray surface exposure ages of the same lava flow, thus suggesting that excess 40Ar is not always a problem in young basalt flows in the San Francisco volcanic field. The exposure age of the Bonito lava flow agrees within uncertainty with dendrochronological and archeological age determinations. K–Ar and cosmogenic 3He and 21Ne ages from the SP flow are in agreement and much older than the OSL age (5.5–6 ka) reported for this lava flow. Furthermore, if the non-cosmogenic ages are assumed to be accurate, the subsequent calculated production rates at South Sheba and SP flow sample sites agree well with values in the literature.  相似文献   

10.
The volcanological history of Campi Flegrei suggests that the most frequent eruptions are characterized by the emplacement of pyroclastic flow and surge deposits erupted from different vents scattered over a 150-km2 caldera. The evaluation of volcanic risk in volcanic fields is complex because of the lack of a central vent. To approach this problem, we subdivided the entire area of Campi Flegrei into a regular grid and evaluated the relative spatial probability of opening of vents based on geological, geophysical and geochemical data. We evaluated the volcanic risk caused by pyroclastic flows based on the formula proposed by UNESCO (1972), R=H×V×Va, where H is the hazard, V is the vulnerability and Va is the value of the elements at risk. The product H×V was obtained by performing simulations of type eruptions centered in each cell of the grid. The simulation is based on the energy cone scheme proposed by Sheridan and Malin [J. Volcanol. Geotherm. Res. 17 (1983) 187–202], hypothesizing a column collapse height of 100 m for eruptions of VEI=3 and 300 m for eruptions of VEI=4 with a slope angle of 6°. Each simulation has been given the relative probability value associated with the corresponding cell. We made use of the GIS software ArcView 3.2 to evaluate the intersection between the energy cone and the topography. The superposition of the areas invaded by pyroclastic flows (124 simulations for VEI=3 and 37 for VEI=4) was used to obtain the relative hazard map of the area. The relative volcanic risk map is obtained by superimposing the urbanization maps.  相似文献   

11.
The variation in the activity patterns of the Chichinautzin volcanic rocks is discussed. This sequence of lavas and pyroclastic deposits is located in the central part of the Mexican Volcanic Belt, directly south of Mexico City, and is typical of its Quaternary monogenetic vulcanism. One-hundred and fourty-six volcanoes and their deposits covering 952 km2 were mapped. Cone density is 0.15 km2 with heights ranging from to 315 m and crater diameters from 50 to 750 m. Ratios of cone height/diameter decreased from 0.20 to 0.12 with age. Basal diameters varied from 0.1 km to 2 km. Lavas are mainly blocky andesites but some dacites and basalts were found. Lengths of flows range from 1.0 to 21.5 km with heights of 0.5 to 300 m and aspect rations of 21.4 to 350. Three types of volcanic structures are found in the area: scoria cones, lavas cones and thick flows lacking a cone. Pyroclastic deposits are basically Strombolian although some deposits were produced by more violent activity and lava cones seem to have formed by activity transitional to Hawaiian-type vulcanism. Therre is a dominant E-W trend shown mainly by the orientation of cone clusters. The Chichinautzin volcanic centers are compared to the monogenetic volcanoes of the Toluca and Paricutin areas which are similar.  相似文献   

12.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   

13.
The eruption of the Pelagatos scoria cone in the Sierra Chichinautzin monogenetic field near the southern suburbs of Mexico City occurred less than 14,000 years ago. The eruption initiated at a fissure with an effusive phase that formed a 7-km-long lava flow, and continued with a phase of alternating and/or simultaneous explosive and effusive activity that built a 50-m-high scoria cone on the western end of the fissure and formed a compound lava flow-field near the vent. The eruption ended with the emplacement of a short lava flow that breached the cone and was accompanied by weak explosions at the crater. Products consist of a microlite-rich high-Mg basaltic andesite. Samples were analyzed to determine the magma’s initial properties as well as the effects of degassing-induced crystallization on eruptive style. Although distal ash fallout deposits from this eruption are not preserved, a recent quarry exposes a large section of the scoria cone. Detailed study of exposed layers allows us to elucidate the mode of cone-building activity. Petrological and textural data, combined with models calibrated by experimental work and melt-inclusion analyses of similar magmas elsewhere, indicate that the magma was initially hot (>1,200°C), gas-rich (up to 5 wt.% H2O), crystal-poor (~10 vol.% Fo90 olivine phenocrysts) and thus poorly viscous (40–80 Pa s). During the early phase, low magma ascent velocity at the fissure vent allowed low-viscosity magma to degas and crystallize during ascent, producing lava flows with elevated crystal contents at T < 1,100°C, and blocky surfaces. Later, the closure of the fissure by cooling dikes focused the magma flow at a narrow section of the fissure. This led to an increased magma ascent velocity. Rapid and shallow degassing (<3 km deep) triggered ~40 vol.% microlite crystallization. Limited times for gas-escape and higher magma viscosity (6 × 105–4 × 106 Pa s) drove strong explosions of highly (60–80 vol.%) and finely vesicular magma. Coarse clasts broke on landing, which implies brittle behavior due to complete solidification. This requires sufficient time to cool and in turn implies ejection heights of over 1 km, which is much higher than “normal” Strombolian activity. Hence, magma viscosity significantly impacts eruption style at monogenetic volcanoes because it affects the kinetics of shallow degassing. The long-lasting eruptions of Jorullo and Paricutin, which produced similar magmas in western México, were more explosive. This can be related to higher magma fluxes and total erupted volumes. Implications of this study are important because basaltic andesites are commonly erupted to form monogenetic scoria cones of the Trans-Mexican Volcanic Belt.  相似文献   

14.
Morphometric analysis of cinder cone degradation   总被引:2,自引:0,他引:2  
Measurements of Vie geometry of cinder cones can be used to determine the morphological effects and rates of degradation. Cinder cones in the San Francisco volcanic field, Arizona (where radiometric dates and stratigraphic studies have determined cone ages) decrease in height, height/width ratio and slope through time. The ratio of crater diameter to cone basal diameter does not appear to change with degradation, nor, as suggested previously, with chemical composition or particle size. Similar results obtained for cinder cones in Nevada, Oregon, Manchuria, Italy and Reunion suggest that the morphometric patterns of degradation are similar for all cinder-cones. The rates of degradation vary tremendously however, with rainfall and temperature being perhaps the most important factors. Since the initial geometries of cinder cones are remarkably similar, degraded cones may be ideal gauges of long-term climatic change.Degradation can be readily modelled for two cases: burial of cinder cone flanks by subsequent lava flows, and erosion and mass wasting. Although the former is locally important, degradation appears to occur principally by the second process: cinders weather to clay, which is gullied by rainfall, with the debris sliding downslope. Such erosion and mass wasting produces a degradation curve in general agreement with observations. Erosion rates can be accelerated orders of magnitude, however, by the mantling of old cones with easily eroded ash deposited during nearby eruptions. Comparison of cinder zone isopach radii and cone separation distances suggests it to be a common effect.  相似文献   

15.
The 2001 and 2002–2003 flank eruptions on Mount Etna (Italy) were characterized by intense explosive activity which led to the formation of two large monogenetic scoria cones (one from each eruption) on the upper southern flank of the volcano. Continuous monitoring of Etna, especially during flank eruptions, has provided detailed information on the growth of these cones. They differ in genesis, shape, and size. A set of high resolution (1 m) digital elevation models (DEMs) derived from light detection and ranging (LIDAR) data collected during four different surveys (2004, 2005, 2006, and 2007) has been used to map morphology and to extract the morphometric parameters of the scoria cones. By comparing LIDAR-derived DEMs with a pre-eruption (1998) 10 m DEM, the volume of the two scoria cones was calculated for the first time. Comparison of the LIDAR-derived DEMs revealed in unprecedented detail morphological changes during scoria cone degradation. In particular, the morphologically more exposed and structurally weaker 2002–2003 cone was eroded rapidly during the first few years after its emplacement mainly due to gravitational instability of slopes and wind erosion.  相似文献   

16.
Multibeam bathymetry and bottom imaging (Simrad EM12D) studies on an area of about 9500 km2 were conducted over the Pitcairn hotspot near 25°10′S, 129° 20′W. In addition, 15 dives with the Nautile submersible enabled us to obtain ground-true observations and to sample volcanic structures on the ancient ocean crust of the Farallon Plate at 3500–4300 m depths. More than 100 submarine volcanoes overprint the ancient crust and are divided according to their size into large (>2000 m in height), intermediate (500–2000 m high) and small (<500 m high) edifices. The interpretation of seafloor backscatter imagery accompanied by submersible observations and sampling enabled us to infer that the total volume of submarine lava erupted during hotspot activity is about 5900 km3 within a radius of about 110 km. The most recent volcanic activities occur on both small and large edifices composed of a great variety of lava flows. These flows vary in composition, following a succession from picritic basalt to alkali basalt, trachybasalt, trachy-andesite and to trachyte. Their large range of SiO2 (48–62%), Na2O+K2O (2–11%), Ba (300–1300 ppm), MgO (1–11%), Nb (19–130 ppm), Ni (4–400 ppm) and rare earth elements suggests that crystal–liquid fractionation from basanite and/or picritic melt sources was a major process. The variation in composition between the least evolved basaltic rocks and the other more evolved silicic lava is marked by a difference in their flow morphology (pillow, giant tubes, tabular to blocky flows). The lava composition and field observation indicate that several magmatic pulses giving rise to cyclic eruptions are responsible for the construction of the edifices. The two larger edifices (>2000 m high) show more extensive eruptive events and a wider range in compositional variability than the smaller (<500 m high) ones. Several (five) submersible transects made along the slope of one of the largest edifices (Bounty) enabled us to observe at least nine successive eruptive cycles progressing from pillow and giant tubular basalt to tabular/blocky trachy-andesite and trachyte flows. Pyroclasts and hyaloclastites are often found with these eruptive sequences. The smaller edifices, forming individualized cones, are built mainly of evolved silicic (SiO2>53%) flows consisting essentially of alternating sequences of trachy-andesite and trachyte. The distribution and composition of the small edifices suggest that they are the result of sub-crustal forceful magma injection and channeling supplied from reservoirs associated with the large volcanoes.  相似文献   

17.
The Puyo scoria cones and the Mera lava flows, two newly recognized volcanic formations dated between Late Pliocene to Middle Pleistocene, extend the limits of the Ecuadorian rear-arc volcanic province some 100 km to the south. The Puyo scoria cones have erupted K-rich absarokites containing olivine, diopside and phlogopite, whereas the Mera lava flows display a basic andesite composition, with olivine and minor augite phenocrysts. In addition to high contents in LILE, LREE and HFSE, the Puyo absarokites exhibit many characteristics of primitive melts, namely high Cr (590–310 ppm) and Ni (330–154 ppm) contents, high Mg# (64–70) and they contain forsteritic olivine (Fo82–89). The composition of the most primary Puyo absarokite was used in petrogenetic models, in order to constrain the genesis of these high-K magmas. Major and trace elements models, as well as isotopic data, indicate that the source of Puyo magmas is a hydrated phlogopite- and garnet-bearing lherzolite. Phlogopite crystallization in the mantle wedge is triggered by the metasomatism by 3–5% of a SiO2-, H2O-rich liquid generated by slab melting. Partial melting of the subducted oceanic crust beneath Ecuador is allowed by the subduction of the young and warm Carnegie Ridge, which modifies the thermal regime of the Benioff zone. A low degree (1–4%) of partial melting of the metasomatized mantle wedge, leaving a variable garnet (4–7%) ± phlogopite (0–4%) lherzolitic residual assemblage, leads to the compositions of the entire Puyo absarokite series and is consistent with previous petrogenetic models developed for the Ecuadorian volcanic arc. Indeed, the homogeneity of isotopic data across the arc suggests a similar source for the whole Ecuadorian magmas.  相似文献   

18.
The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.  相似文献   

19.
The temporal evolution of simple landforms such as cinder cones by nonlinear diffusive processes is studied through the use of a new 2D numerical model using well‐established and accurate numerical mathematics and high‐resolution digital elevation models (DEMs). Extending 1D (profile) nonlinear diffusion analyses used in cinder cone, hillslope and fault scarp evolution studies, we have implemented a 2D numerical model with a spatially and temporally varying sediment transport rate coefficient scaled nonlinearly by the ratio of local slope to critical slope. The high accuracy and efficient numerical implementation are documented in the paper and the MATLAB toolkit developed is used to solve for the developmentof an initial 2D cone form. First, we examine the nonlinear transport rule and suggest a refinement that accounts explicitly for flux at threshold slopes. We find that the maximum diffusion (necessarily introduced in the numerical model to avoid infinite rates) at the critical slope controls the final morphology, especially approaching steady state. Secondly, solving the landscape evolution problem in 2D enables a natural accounting for sediment flux convergence or divergence in the profile. Thirdly, the boundary behavior of a given landscape element controls much of what happens in that domain and so we allow for arbitrary flux magnitude or elevation boundary conditions. Fourthly, landscapes are heterogeneous in their surface cover and so we allow for spatially and temporally varying transport rate k and we permit an arbitrary vertical displacement field within the model domain. To test the new formulation for the nonlinear term, the effect of variable diffusivity k and the numerical schemes implemented, we apply the model to cinder cones built on the flanks of Mount Etna in 2001 and 2002–2003. We explore the effects of DEM resolution with data from the 2001 cone and the utility of spatially variable diffusivity to explain the variation in erosion measured by differencing repeat light detection and ranging (LIDAR) surveys gathered in 2004 and 2007 over the 2002–2003 cone complex. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Although hillslope evolution has been subject to much investigation for more than a century, the effect of climate on the morphology of soil‐mantled hillslopes remains poorly constrained. In this study, we perform numerical simulations of volcanic cinder cones in the Golan Heights (eastern Mediterranean) to estimate soil transport efficiency across a significant north–south gradient in mean annual precipitation (1100 to 500 mm). We use the initial cinder cone morphology (constrained by stratigraphy), the modern hillslope form (surveyed with sub‐meter accuracy) and the eruption age (based on 40Ar–39Ar chronology) to predict the best‐fit value of the soil transport coefficient (‘diffusivity’) based on a nonlinear transport model. Our results indicate that the best‐fit diffusivity (K ) varies from 1 to 6 m2 ka?1 among the five cinder cones in our field area. Diffusivity (K ) values vary systematically with precipitation and hillslope aspect; specifically, K is higher on south‐facing (drier) hillslopes and decreases with mean annual precipitation. We interpret this climate dependency to reflect vegetation‐driven variations in apparent soil cohesion, which increases with root network density, and attenuation of rain splash and overland flow erosion, which increases with vegetative ground cover. To assess how vegetative root mass and ground cover vary with precipitation and aspect, we quantified the spatial distribution of NDVI (normalized difference vegetation index) from ASTER satellite images and observed spatial variations that correlate with our calibrated values of K . Analysis of previously studied cinder cones in the USA can be used to extend our framework to arid domains. This endeavor suggests a humped relationship between K and precipitation with maximum diffusivity at mean annual precipitation of 400–600 mm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号