共查询到20条相似文献,搜索用时 15 毫秒
1.
G. D. Fleishman 《Astronomy Letters》2004,30(9):603-614
We studied the spectral properties of the electron cyclotron maser emission generated by anisotropic distributions of fast electrons with power-law magnitude distributions in solar flares. The natural bandwidth of the generated spectral line depends significantly on the angle between the direction of the wave emission and the direction of the magnetic field in the source. In addition, the line bandwidth depends on the parameters of the momentum and pitch-angle distribution functions for fast electrons. The typical spectral bandwidths are shown to lie within the range 0.1–0.4%, in agreement with the minimum observable bandwidths of millisecond solar radio spikes. 相似文献
2.
Rudolf A. Treumann 《Astronomy and Astrophysics Review》2006,13(4):229-315
The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects. 相似文献
3.
Gavin Ramsay Catherine Brocksopp Kinwah Wu Bruce Slee Curtis J. Saxton 《Monthly notices of the Royal Astronomical Society》2007,382(1):461-465
Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultracompact binaries with orbital periods of 5.4 and 9.6 min, respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extrasolar terrestrial planets with conducting cores. If UI is present, circularly polarized radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the Very Large Array (VLA) and Australian Telescope Compact Array (ATCA). In one epoch, we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artefact in the data reduction process, the fact that it was detected at a significance level of 5.8σ and found to be transient suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarization to be ∼50 per cent. The inferred brightness temperature exceeds 1018 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876. 相似文献
4.
A fully relativistic electron maser is proposed for the explanation of certain non-thermal solar and stellar radio bursts. This mechanism (maser synchrotron) is based on a gyroresonant interaction between waves and electrons of high energies and uses the free energy contained in an electronic distribution function that peaks for energies around 1 MeV.By a calculation of the growth rates of the three electromagnetic modes, we show that the X-mode prevails for values of
p/
cup to 2 or 3. This result is very different from the standard cyclotron maser case where such values of
p/
clead to quench the X-mode growth. Hence, the synchrotron maser instability appears to be a direct and efficient amplification process for considerably larger physical conditions than the cyclotron maser. In addition, the radiation, emitted over the second gyroharmonic, freely propagates without a strong reabsorbtion at the 2
clayer. All these points can constitute major advantages of this mechanism in an astrophysical context.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986. 相似文献
5.
《Planetary and Space Science》1986,34(2):125-129
The spatial distributions of energetic ion and electron bursts observed on the IMP 7 and 8 satellites in the Earth's magnetotail were studied. It was found that the ion bursts were more frequently detected in the dusk than in the dawn quarter of the neutral sheet whereas the electron bursts, more frequently in the dawn than the dusk quarter. The degree of dawn-dusk asymmetry is however energy dependent; the distribution for higher energy particle bursts exhibits higher degree of asymmetry. The morphologies of the distributions manifest themselves as seasonal variations of the most probable solar ecliptic latitudes at which the ion and electron bursts were observed. The amplitudes of the variations are about 25° with the seasonal variation for ions leading that for electrons by about 2 months. 相似文献
6.
We derive equations for the multipole moments of the distribution function of Galactic cosmic rays with energies 1–20 TeV that experience random scattering by turbulence with a power-law spectrum. We take into account the irregularity of the local interstellar medium (LISM) in the neighborhood of the solar system due to the presence of interstellar clouds, the interstellar wind flow around the heliomagnetosphere, and preceding supernova explosions in the local superbubble. The amplitudes of the second and third harmonics of the cosmic-ray distribution function are expressed in terms of the amplitude of the first harmonic without assuming them to be small compared to the first harmonic. Reconciling their values in magnitude and phase with the observed values requires a significant LISM irregularity, which is consistent with other observational data on the LISM structure. Our model is consistent with the assumption that supernova remnants in the Galactic disk located at distances from the Solar system much larger than the particle transport mean free path are the sources of the particles under consideration. 相似文献
7.
In recent years radiation has been observed from planets, Sun and stars that is best explained by the cyclotron maser instability; in fact, all celestial bodies that might feasibly emit and be detected by their cyclotron maser radiation have been detected. Here we review those observations, the developments in the theory, the recent work on the effiency of energy transfer by cyclotron maser radiation, and some recent and future observations that might demonstrate whether the mechanism is energetically important in solar and stellar flares.
相似文献8.
In recent years radiation has been observed from planets, Sun and stars that is best explained by the cyclotron maser instability; in fact, all celestial bodies that might feasibly emit and be detected by their cyclotron maser radiation have been detected. Here we review those observations, the developments in the theory, the recent work on the effiency of energy transfer by cyclotron maser radiation, and some recent and future observations that might demonstrate whether the mechanism is energetically important in solar and stellar flares.This work was supported in part by NASA's Solar Heliospheric Physics and Solar Terrestrial Theory Programs under grants NSG-7287 and NAGW-91 to the University of Colorado. The numerical simulations were performed on the Cray XMP at the San Diego Supercomputer Center which is funded by the National Science Foundation. 相似文献
9.
Electrons accelerated during solar flares are revealed by their electromagnetic radiation in different spectral ranges, emitted at different heights in the solar atmosphere. The observational analysis points to a common and continuous injection of particles. Based on this result, a quantitative investigation of the hard X-ray and microwave emissions observed during the 29 June, 1980 flare at 11: 40 UT has been performed. This is the first modelisation that takes into account both the inhomogeneity of the microwave source region and the dynamical evolution of the electron population. First results of our model computations demonstrate that during the most energetic phase of the event both hard X-rays and microwaves are described by electron populations resulting from the same injection function, and that the total numbers of electrons required for both emissions are compatible. Account for the inhomogeneity of the microwave source is shown to be a necessary condition for the interpretation of observed spectra.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985. 相似文献
10.
It has been argued that the loss-cone-driven electron cyclotron maser instability can account for the properties of millisecond microwave spike bursts observed during some solar flares. However, as it propagates outward from the corona, maser radiation undergoes gyroresonance absorption when its frequency is a harmonic of the local electron-cyclotron frequency. Existing analytical models using slab geometries predict that this absorption should be sufficiently strong to prevent the radiation from being seen at the observed levels, except under highly restrictive conditions or for unrealistic plasma parameters. A more comprehensive analysis is presented here to determine if and when maser radiation can escape to produce microwave spike bursts. This analysis employs numerical raytracing and incorporates propagation and absorption of fundamental maser emission in a realistic model of a coronal flux loop. It is found that ranges of physical conditions do exist under which maser radiation can escape to an observer and that these conditions are much more limiting for fundamental emission in the extraordinary ()-mode than in the ordinary (o)-mode. Detailed investigation implies that escaping radiation in the -mode is highly directional and chiefly observable toward the center of the solar disk, while escapingo-mode radiation is found to emerge from the corona over a much wider range of directions, with some cases corresponding to radiation observable near the solar limb. 相似文献
11.
Huang Guangs LI 《Solar physics》1987,114(2):363-373
A theoretical analysis of electron-cyclotron maser instabilities indicates that the distribution function of non-thermal electrons influences millisecond radio spikes in solar flares, and that a hollow beam distribution is more likely than a loss-cone distribution. The restrictions of classical theories of cyclotron resonant absorption are discussed and a formula is derived for the absorption coefficient near the resonant frequency. Finally, the computations show that for typical coronal parameters, the growth rates of the fundamental of fast extraordinary modes are much faster than those of their second harmonics; and because the directional angle of the fundamental is smaller, its resonant absorption may be neglected. Moreover, the band-width of the fundamental is consistent with observation of radio spikes; therefore, we claim that the millisecond radio spikes in the decimetric range are composed mainly of fundamentals of the fast extraordinary modes. The second harmonics of fast extraordinary modes may be generated for directions near to the vertical to the magnetic field, but it is impossible to observe both fundamental and second harmonics in the same direction. 相似文献
12.
S. R. Kane 《Solar physics》1982,113(1-2):145-164
The propagation, cofinement and total energy of energetic (>25 keV) electrons in solar flares are examined through a brief review of the following hard X-ray measurements: (1) spatially resolved observations obtained by imaging instruments; (2) stereoscopic observations of partially occulted sources providing radial (vertical) spatial resolution; and (3) directivity of the emission measured through stereoscopic observations and the center-to-limb variation of the occurrence frequency of hard X-ray flares. The characteristics of the energetic electrons are found to be quite distinct in impulsive and gradual hard X-ray flares. In impulsive flares the non-thermal electron spectrum seems to extend down to 2 keV indicating that the total energy of non-thermal electrons is much larger than that assumed in the past. 相似文献
13.
Solar Physics - The propagation, cofinement and total energy of energetic (>25 keV) electrons in solar flares are examined through a brief review of the following hard X-ray measurements:... 相似文献
14.
Yushu Zhang Hui Zhu Lewei Zhang Yihua He Zhonglei Gao Qinghua Zhou Chang Yang Fuliang Xiao 《Astrophysics and Space Science》2014,352(2):613-620
Using the STEERB (storm-time evolution of electron radiation belt) code, we simulate the evolution of radiation belt energetic electrons during geomagnetic storms in the case of low energy electron injection. The STEERB code is used to solve the three-dimensional Fokker–Planck diffusion equation which incorporates wave-particle interaction, Coulomb collisions and radial diffusion. Numerical simulations show that under the short time (~1 h) injection of low energy (0.1 MeV≤E k ≤0.2 MeV) fluxes of radiation belt energetic electrons can increase during the entire storm period. During the main and recovery phases, such injection efficiently enhances chorus-driven acceleration of radiation belt energetic electrons, allowing fluxes of energetic electrons by a factor of 1–2 orders higher than those in the absence of injection. The current results indicate that substorm-induced electron injection must be incorporated to investigate the evolution of radiation belt energetic electrons. 相似文献
15.
The processes by which energetic electrons lose energy in a weakly ionized gas of argon are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiences are computed for energies up to 200 eV absorbed in a gas with fractional ionizations varying up to 10?2. 相似文献
16.
G. Wibberenz K. Kecskeméty H. Kunow A. Somogyi B. Iwers Yu. I. Logachev V. G. Stolpovskii 《Solar physics》1989,124(2):353-392
We present a new method to separate interplanetary and coronal propagation, starting from intensity variations observed by spaceprobes at different heliolongitudes. In general, a decrease in absolute intensities is observed simultaneously with an increase in temporal delays. The coupling of these two effects can be described by Reid's model of coronal diffusion and can in principle be used to determine the two coronal time constants, diffusion time t
c
and escape time A. In addition, a least-squares fit method is used to determine the parameters of interplanetary transport, assuming a radial dependence as (r) = 0(r/1 AU)b. The method is applied to the two solar events of 27 December, 1977 and 1 January, 1978 which were observed by the spaceprobes Helios 1, Helios 2, and Prognoz 6. Energetic particle data are analysed for 13–27 MeV protons and -0.5 MeV electrons. For the regions in space encountered during these events the mean free path of electrons is smaller than that of protons. Straight interpolation between the two rigidities leads to a rather flat rigidity dependence (P) P
n
with n = 0.17–0.25. This contradicts the prediction of a constant mean free path or of the transition to scatter-free propagation below about 100 MV rigidity. In three of the four cases the mean free path of 13–27 MeV protons is of the order 0.17 AU, the mean free path of electrons of the order 0.06 AU. For protons we find b - 0.7 for the exponent of the radial variation.The concept of two different coronal propagation regimes is confirmed. It is remarkable that in both regimes electrons are transported more efficiently than protons. This holds for the temporal delay as well as for the amplitude decrease. This is in contrast with the long existing concept of rigidity independent transport and puts severe limits to any model of coronal transport. For the December event all three spaceprobes are in the fast propagation regime up to an angular distance of 62°. For protons we find a finite delay even in the fast propagation region, corresponding to a coronal delay rate of about 0.8 hr rad-1 up to 60° angular distance. In contrast, relativistic electrons may reach this distance within a few minutes.The fast transport of electrons and the different behaviour of electrons and protons is in contradiction to the expanding bottle concept. An explanation of coronal transport by shock acceleration directly on open field lines could in principle work in case of protons in the fast propagation region, but would fail in case of the electrons. The fast and efficient transport of electrons is most likely due to a region of field lines extending over a wide range of longitudes directly from the active region into interplanetary space. The much slower transport of both particle types at large azimuthal distances can neither be explained by direct access to open field lines not by the direct shock acceleration concept. A possible explanation is the loop reconnection model in a modified version, allowing for a faster lateral transport of electrons.Now at AEG, 2000 Wedel, F.R.G. 相似文献
17.
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 10?2 and the mean energy per neutral hydrogen atom pair is calculated. 相似文献
18.
We have investigated the behavior of the X-ray bremsstrahlung spectra resulting from two distinct types of electron distribution functions impinging on a target atmosphere during flare activity. A power-law distribution function is compared with two double-peaked Maxwellians. The results of these calculations show that it would be difficult to rule out multithermal interpretations for the emitted high-energy X-rays. 相似文献
19.
For the November 5, 1980 flare it is investigated how the plasma in a large flaring loop responds to the injection of energetic electrons. Observations are compared with the results of a one-dimensional numerical simulation. For the simulation it is assumed that at the time the injection is started, the plasma is in an equilibrium state with a constant pressure along the loop and conductive heating compensated by radiative losses. Especially important for the evolution of the impulsively heated plasma is the penetration depth of the fast electrons compared to the depth of the transition layer. Both parameters are known from the observations. The injected energy is 2.6 × 1011 ergs cm ?2 in 30 s (as derived from the hard X-ray observations) and computations show that the high temperature plasma of the loop responds to it with upward motions of about 50 km s?1, i.e. with velocities much smaller than the ion sound speed (≈ 500km s?1). The heating of the plasma due to the absorption of beam energy can be understood using a constant density approximation. After the heating phase the plasma returns in about 5 min to its initial state by conductive cooling. The downward conducted energy is radiated away in the transition zone. The numerical simulation shows that impulsive heating by non-thermal electrons only does not explain the observed large increase in the density of the loop during the flare. It is therefore required that continuous energy and/or mass input occur after the impulsive phase. 相似文献
20.
For decades, ground-based radio observations of Jovian synchrotron radiation have shown emission originating predominantly from the equatorial region and from high-latitude regions (lobes) near L∼2.5. The observations show a longitudinally asymmetric gap between the emission peaks of the lobes and the atmosphere of Jupiter. One possible explanation for these gaps is the loss of electrons through collisions with atmospheric neutrals as the electrons bounce along magnetic field lines and drift longitudinally in the presence of asymmetric magnetic fields. To assess this hypothesis, we applied the recently developed O6 and VIP4 magnetic field models to calculate the trajectories of electrons as they drift longitudinally in Jupiter's magnetic field, and derive the sizes of their equatorial drift loss cones. We then identified the shells on which electrons would be lost due to collisions with the atmosphere. The calculated drift loss cone sizes could be applied in future to the modeling of electron distribution functions in this region and could also be applied to the study of Jovian auroral zone. This method also allowed us to compute the shell-splitting effects for these drifting electrons and we find the shell-splitting to be small (?0.05RJ). This justifies a recent modeling assumption that particles drift on the same shells in a three-dimensional distribution model of electrons. We also compared the computed gaps with the observed gaps, and found that the atmospheric loss mechanism alone is not able to sufficiently explain the observed gap asymmetry. 相似文献