首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five sites located on a bathymetric transect of the distal Demerara Rise were studied by ODP Leg 207. Albian sediments of essentially terrigenous nature (clay, siltstone, sandstone) are the oldest drilled stratigraphic levels and form apparently the top of the synrift sequence. They are overlain by Cenomanian to Santonian finely laminated black shales, rich in organic matter of marine origin, which accumulated on a thermally subsiding ramp. Early Campanian hiatuses are thought to be the result of final disjunction of Demerara Rise (South America) from Africa and the onset of deep water communication between the two Atlantic basins (south and central). The overlying Uppermost Cretaceous–Oligocene chalk includes rich and diversified calcareous plankton assemblages, as well as two radiolarian-rich intervals (Late Campanian and Middle Eocene). A complex erosional surface developed during the Late Oligocene–Early Miocene. Sedimentation was impeded since then on the intermediate and deep sites of Demerara Rise, possibly due to the action of deep submarine currents. To cite this article: T. Danelian et al., C. R. Geoscience 337 (2005).  相似文献   

2.
Thick sequences of dark colored, organic carbon rich, finely laminated Santonian–Cenomanian claystones and homogeneous Albian siltstones were recovered from Ocean Drilling Program Sites 1257, 1258 and 1260 on the Demerara Rise in the western equatorial Atlantic Ocean. Total organic carbon (TOC) concentrations vary from 2 to over 20 wt% in the sequences of “black shales” that were deposited over a period of ~20 million years. Similarly long periods of elevated marine productivity implied by the high TOC concentrations are uncommon in the geological record and must have required unusual paleoceanographic conditions. The importance of nitrogen fixing bacteria to sustaining the amplified export production of organic matter is indicated by δ15N values that remain between ?4‰ and 0‰, a range that is notably less positive than the average of +5‰ for modern ocean sediments. Although containing mostly marine organic matter, the black shales have TOC/TN molar ratios between 20 and 40 that mimic those of land plant organic matter. The anomalously large TOC/TN ratios suggest selective organic matter degradation, probably associated with low oxygen conditions in the water column, that favored preservation of nitrogen poor forms of organic matter relative to nitrogen rich components. Deposition of black shales on the Demerara Rise was likely a consequence of the mid-Cretaceous warm and wet greenhouse climate that strengthened thermohaline stratification of this part of the Atlantic Ocean, which in turn encouraged bacterial nitrogen fixation, enhanced primary production, magnified organic matter export, and ultimately established anoxic conditions at the seafloor that improved preservation of organic matter for much of the 20 My period represented by these thick sequences.  相似文献   

3.
A reaction-transport model was used to infer the long-term evolution of anaerobic organic matter degradation in Cretaceous black shales from the distribution of authigenic barite in sediments drilled at Demerara Rise (ODP Leg 207, Site 1258). In these sediments, sulfate-reduction and methanogenesis are the major pathways of organic matter decomposition and the depth-distribution of authigenic barite serves as an indicator for the temporal evolution of the sulfate-methane transition zone (SMTZ), the strength of the biogenic methane flux and, ultimately, the organic matter reactivity in the black shales over geological timescales. Organic matter degradation is described according to the reactive continuum model approach and parameters values are determined by inverse modeling, based on present-day porewater and authigenic barite profiles. Fully transient simulations were performed over a period of 100 Myrs and indicate that important features of the biogeochemical dynamics are associated to changes in the boundary forcing. Hiatuses in sediment accumulation rate result in quasi-steady-state conditions and lead to distinct accumulations of authigenic barites in the SMTZ. The inversely determined parameters reveal that the reactivity of the organic matter was already low (apparent first order rate constant ) at the time of its deposition in the Cretaceous. The geochemical characteristics of sediments drilled at Demerara Rise, as well as the presence of specific biomarkers, suggest that this low reactivity is most likely due to the euxinic palaeo-conditions which favored the sulfurization of the organic matter. Simulation results predict average initial organic carbon contents between 8.1 and 9.5 wt%, implying a high preservation efficiency of the organic matter (between 79% and 89%). Calculated mass accumulation rates (between 0.43 and 0.5 ) compare well with estimations for the western basin of the Cretaceous southern North Atlantic. Simulation results thus indicate that the enhanced preservation of organic matter under euxinic conditions may have been the main cause for the formation of organic-rich Cretaceous black shales at Demerara Rise.  相似文献   

4.
Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian–Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, δ13Corg values lie mostly between −30‰ and −27‰, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low δ13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian–Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.  相似文献   

5.
A transport-reaction model was designed to identify the combination and importance of biogeochemical processes operating in four sites drilled during ODP Leg 207 (Demerara Rise, Equatorial Atlantic). Almost 100 Ma after their deposition, deeply buried Cretaceous black shales still act as active bioreactors in great sediment depths and control the biogeochemical reaction network of the whole sediment column. According to a model calibrated at the four drill sites through inverse modeling techniques, methanogenesis could be identified as a key process that dominates not only organic matter degradation but also sulfate availability through the anaerobic oxidation of methane above the black shales. A complete depletion of sulfate within the black shale sequences promotes the remobilization of biogenic barium that reprecipitates as authigenic barite at the top of the sulfate depletion zone. Temporal dynamics of degradation processes caused continuous shifts of the barite precipitation zone during burial, thus inhibiting the formation of an authigenic barite front or causing the dissolution of earlier formed fronts. Major deviations of pore water sulfate profiles from a linear gradient coincide with depths of decelerated or accelerated transport caused by local porosity minima or maxima. Model-determined reaction rates are by far lower than those found in shallower sediments due to the low metabolic activities that are characteristic for the Deep Biosphere. But even after almost 100 Ma, changing organic matter quality still influences the degradation within the black shale sequences, as it is indicated by model results.  相似文献   

6.
Joint application of the Mo isotope paleoredox proxy and Re-Os deposition-age geochronometer to euxinic black shales has potential for tracing the evolution of ocean redox chemistry over geological time. Here, we report new Re-Os and Mo isotope data for the Mesoproterozoic Velkerri Formation (Roper Group) and Paleoproterozoic Wollogorang Formation (Tawallah Group), McArthur Basin, northern Australia. New Re-Os ages of 1361 ± 21 Ma (2σ, n = 14, mean square of weighted deviates [MSWD] = 1.3, Model 1) and 1417 ± 29 Ma (2σ, n = 12, MSWD = 1.3, Model 1) constrain the depositional age of the Velkerri Formation and its contained biomarkers, as well as acritarchs and microfossils from the Roper Group. Black shales from the upper Velkerri Formation have high Mo abundances (105-119 ppm) and degree of pyritization [DOP] values (0.90-0.92) implying quantitative conversion of molybdate (MoO42−) to thiomolybdate (MoS42−) in overlying bottom waters. The average δ97/95Mo (0.72 ± 0.10‰, 2σ, n = 6) of these shales is consistent with previous data, but represents a significantly more precise determination for global seawater δ97/95Mo at 1.4 Ga. This value is lighter than present-day seawater by ∼0.85‰ and reflects expanded strongly euxinic deep ocean conditions ([H2S]aq > 11 μM) relative to oxic, suboxic, and weakly/intermittently euxinic ([H2S]aq < 11 μM) marine deposition in the 1.4 Ga oceans. Mass-balance modelling suggests Mo removal into strongly euxinic and oxic sediments may have comprised 30-70% and less than 15%, respectively, of the oceanic Mo sink at 1.4 Ga as opposed to 5% and 35% today, respectively.The Re-Os radioisotope system in organic-rich shales serves as a test for post-depositional alteration that could affect the usefulness of paleoredox tracers such as Mo stable isotopes. Re-Os isotope data for the Wollogorang Formation black shales are scattered and yield a highly imprecise date of 1359 ± 150 Ma (2σ, n = 21, MSWD = 85, Model 3). This age is younger than U-Pb zircon ages from interbedded tuffs that constrain the age of deposition at ca. 1730 Ma. In conjunction with previous petrological, geochemical, and paleomagnetic data, the Re-Os isotope data suggest hydrothermal fluid flow through the Wollogorang Formation, possibly associated with formation of the ca. 1640 Ma McArthur River Pb-Zn-Ag sedimentary exhalative deposit, resulted in post-depositional mobilization of Re and Os. Based on the degree of deviation of the Re-Os data from a 1730 Ma reference line, open-system behavior of Re and Os was greatest near the base of the black shale unit. Wollogorang Formation black shales are enriched in Mo (41-58 ppm), but are characterized by variable δ97/95Mo (0.3-0.8‰) and DOP (0.57-0.92). The lightest δ97/95Mo values occur near the base of the black shale unit. Based on the Re-Os systematics, hydrothermal fluids have probably overprinted the authigenic δ97/95Mo signature in those shales. However, the heaviest δ97/95Mo values in the Wollogorang Formation come from stratigraphically higher shales, and are similar to those observed for the Velkerri Formation, and thus may reflect seawater δ97/95Mo at 1.73 Ga.  相似文献   

7.
The Upper Permian Xuanwei Formation widely occurs in western Guizhou, unconformably overlying the Emeishan basalts, and mainly consists of black shales. It is ∼170 m thick at Cuyudong Village, Weining County, West Guizhou, China, where the samples of black shale and sandy shale were collected and analyzed. The shales mainly contain SiO2, 18.9%–44.1%, Al2O3, 14.8%–52.8%, Fe2O3, 1.0%–41.2%, LOI, 3.2%–21.1%, TiO2, 1.0%–6.7%, and MgO, 0.2%–2.5%. The contents of all other major elements are lower than 1.0%. It is shown that the black shales have higher contents of Fe2O3 and LOI than normal shales. The siderites occurred in the black shales with higher contents of Fe2O3, which may be attributed to hydrothermal activities on seafloor. All analyzed shale samples have extremely high Ga, 47.8×10−6–109.9×10−6 (70.5×10−6 on average), higher than the industrial mining standard of Ga Resource Industry Standard. The total contents of rare-earth elements (REE) of 9 black shale samples vary from 213×10−6 to 1460×10−6, suggesting that these black shales are enriched in REE. The shale-normalized REE patterns display both positive and negative Ce anomalies (Ce/Ce* from 0.5 to 1.7), revealing that the Xuanwei shales were precipitated under oxic and anoxic conditions. The Rb-Sr chronological diagram of 6 shale samples in the Xuanwei Formation shows an age of 255±12 Ma. Strontium isotopic ratios (87Sr/86Sr)t0 range from 0.70635 to 0.70711, suggesting that these Xuanwei black shales might be derived from chemical weathering of the Emeishan basalts.  相似文献   

8.
Black shales and thin-bedded cherts in the basal Cambrian are widespread worldwide and they carry important information on the formation of sedimentary basins and on the tectonic history. We studied the geochemical signatures of the early Cambrian black shales and bedded cherts from the Northern Tarim Basin, China, with the objectives of understanding the depositional setting of these rocks and inferring the tectonic history in the region. Twenty two black shales, ten cherts, and two nodular phosphorites were collected from two outcrops at Xiaoerbulake and Sugaitebulake in the Northern Tarim Basin, spanning vertical sections of 8.8 and 7.5 m, respectively. A suite of techniques, including field investigations, X-ray diffraction, electron microscopy, trace element, rare earth element (REE), and isotope geochemistry, were employed to characterize the geochemical signatures of these rocks. Field evidence indicates that the black shales and bedded cherts are over- and underlain by dolomites, suggesting a shallow marine depositional environment. Mineralogical and trace element data suggest that the Tarim black shales and cherts were deposited in a suboxic continental shelf environment, and hydrothermal activity may have extracted certain trace elements from mafic continental crust and concentrated them in the sedimentary basin. REE characteristics for the cherts are very similar to those that are known to be deposited in pelagic ocean floor settings, suggesting that the hydrothermal fluids may be derived from the infant southern Tianshan Ocean in the north of the Tarim Basin. Os isotope signatures at the time of deposition (187Os/188Osi = 1.1–2.7) are typical of crustal signatures, and the radiogenic Os isotope signatures rule out the mantle as a possible source of Os and other metals. A positive correlation between 187Os/188Os and εNd is consistent with upper crust-derived basin sediments that contain a variable contribution of hydrothermal fluids possibly derived from ancient mafic continental crust. These trace element, REE, and isotope systematics collectively suggest that incorporation of hydrothermal fluids derived from ancient, mafic continental crust combined with deposition in relatively reducing conditions may have controlled the chemical and isotopic compositions of these rocks. We infer that the hydrothermal fluid was carried to the continental shelf by upwelling during the initial stages of formation of the southern Tianshan Ocean, where the fluid interacted with thinned, mafic crustal basement lithologies and was subsequently incorporated into the black shales and bedded cherts in the Northern Tarim Basin. This study provides important geochemical evidence for the creation of the Tianshan Ocean, which is a result of break-up of the Rodinia Supercontinent during the early Cambrian.  相似文献   

9.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

10.
《Gondwana Research》2011,19(4):632-637
In South China, the Datangpo black shales (663 Ma–654.5 Ma) were deposited during the Cryognian interglacial time between the Sturtian and Marinoan glaciations. Multi-geochemical proxies, including different iron speciation and relevant ratios (FeHR/FeT, FeP/FeHR and FeT/Al ratios) and molybdenum concentrations, were used to reconstruct the paleo-depositional environment of this black shale horizon. The ratios of different iron species (FeHR/FeT > 0.38 and FeP/FeHR < 0.80) suggest an overall anoxic conditions (ferruginous) over the deposition of the black shales, although intermittent euxinic (FeHR/FeT > 0.38 and FeP/FeHR  0.80) and oxic (FeHR/FeT < 0.38) intervals could have occurred. Furthermore, FeT/Al ratios (FeT/Al  0.51) confirm that water column may not be persistent euxinia during the deposition of the Datangpo black shales. Meanwhile, molybdenum concentrations show a decreasing trend towards the top of the black shales, reconciling the gradual oxygenating trend during this period as stated above. Compared to δ34SPy values in the Mesoproterozoic deep ocean, more positive δ34SPy values of this study may result from a small size of sulfate reservoir. The small-size sulfate reservoir and concurrent enrichment of molybdenum indicate that the ocean chemistry in the Cryogenian Period is similar to that in the Archean Eon.  相似文献   

11.
《Cretaceous Research》2012,33(6):685-699
Albian pelagic successions of the Nebeur area in northwestern Tunisia consist of radiolarian-bearing and organic-rich black shale beds, which represent the lower part of the Fahdene Formation. The carbonate content of the organic-rich beds ranges between 40 and 48%. Total organic carbon (TOC) analyses via Rock Eval pyrolysis yielded values ranging between 0.7 and 2.8% and a mixed marine/terrestrial origin. Tmax values vary between 424 and 450 °C, indicative of submature to mature organic matter. High resolution planktic foraminiferal and radiolarian biostratigraphy suggest that the black shales beds span the mid- to late Albian, confined to the middle part of the Ticinella primula zone, upper Biticinella breggiensis zone and lower appeninica + buxtorfi zone. Episodes of organic-rich deposition in the “Tunisian Trough” are interpreted as being the sedimentary record of the global oceanic anoxic events OAE1b, c, and d respectively. Age-diagnostic radiolarian assemblages recovered from late Albian organic-rich black shales lie within the UA13–UA14 boundary biochronozones. The abundance of radiolarian and calcispheres (i.e. pithonella) within the black shales suggests high productivity periods and eutrophic conditions probably triggered by upwelling currents.  相似文献   

12.
Black shales occur widely in the Lower Cambrian and Neoproterozoic strata on the Yangtze Platform, South China. In this study, Lower Cambrian black shales from Xiuning section and Late Neoproterozoic black shales from Weng’an section were studied and Pb isotopic compositions were analyzed following a stepwise acid-leaching technique. The 206Pb/204Pb ratios in both sections show large variations, from 18.906 to 43.737 in the Weng’an section and from 24.811 to 38.110 in the Xiuning section. In contrast, the ranges for 207Pb/204Pb and 208Pb/204Pb values in both sections are relatively smaller from 15.649 to 17.126 and 37.744-38.199 in the Weng’an section, and from 16.034 to 16.783 and 38.602-39.391 in the Xiuning section, respectively. These data yielded two Pb isotope isochron ages of 536±39 and 572±36 Ma, respectively. These ages well accord with other published data and we suggest that they represent the depositional ages for the Lower Cambrian Hetang Formation and the upper Neoproterozoic Doushantuo Formation in South China.  相似文献   

13.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   

14.
A black shale sample collected from the Chimiari site(Tarbela) was analyzed for elemental contents.Inductively coupled plasma-optical emission spectrometry(ICP-OES) was employed to determine major and trace elements in the digests.Precise analysis was accomplished for the black shales,which was better than 2.0%.Result shows that the shales are very rich in Ca(25439 μg·g-1),Fe(13933 μg·g-1),Ti(6932 μg·g-1),Al(5993 μg·g-1) and K(2730 μg·g-1).  相似文献   

15.
Extensive measurements of dissolved Re and major ion abundances in the Yamuna River System (YRS), a major tributary of the Ganga, have been performed along its entire stretch in the Himalaya, from its source near the Yamunotri Glacier to its outflow at the foothills of the Himalaya at Saharanpur. In addition, Re analysis has been made in granites and Precambrian carbonates, some of the major lithologies of the drainage basin. These data, coupled with those available for black shales in the Lesser Himalaya, allow an assessment of these lithologies’ contributions to the Re budget of the YRS.The Re concentrations in the YRS range from 0.5 to 35.7 pM with a mean of 9.4 pM, a factor of ∼4 higher than that reported for its global average concentration in rivers. Dissolved Re and ΣCations∗ (= Na∗+K+Ca+Mg) are strongly correlated in the YRS, indicating that they are released to these waters in roughly the same proportion throughout their course. The Re/ΣCations∗ in most of these rivers are one to two orders of magnitude higher than the (Re/Na+K+Mg+Ca) measured in granites of the Yamuna basin. This leads to the conclusion that, on average, granites/crystallines make only minor contributions to the dissolved Re budget of the YRS on a basin-wide scale, though they may be important for rivers with low dissolved Re. Similarly, Precambrian carbonates of the Lesser Himalaya do not seem to be a major contributor to dissolved Re in these rivers, as their Re/(Ca+Mg) is much less than those in the rivers. The observation that Re concentrations in rivers flowing through black shales and in groundwaters percolating through phosphorite-black shale-carbonate layers in phosphorite mines are high, and that Re and SO4 are significantly correlated in YRS, seems to suggest that the bulk of the dissolved Re is derived from black shale/carbonaceous sediments. Material balance considerations, based on average Re of 30 ng g−1 in black shales from the Lesser Himalaya, require that its abundance in the drainage basin of the YRS needs to be a few percent to yield average Re of 9.4 pM. Furthermore, the positive correlation between Re and ΣCations∗ would require that these Re-rich sediments (e.g., black shales) and Re-poor lithologies (e.g., crystallines, Precambrian carbonates) contribute Re and cations in roughly the same proportion throughout the drainage basin. The available data on the abundance and distribution of black shales in the basin are not adequate to test if these requirements can be met.The annual fluxes of dissolved Re at the base of the Himalaya from the Yamuna are ∼150 mol at Batamandi and ∼100 mol at Saharanpur, compared to ∼120 mol from the Ganga at Rishikesh. The total flux from the Yamuna and the Ganga account for ∼0.4% of the global riverine Re flux, much higher than their contribution to global water discharge. This is also borne out from the mobilization rate of Re: ∼1 to 3 g km−2 y−1 in the Ganga and Yamuna basins in the Himalaya, compared to the global average of ∼0.1 g km−2 y−1.Black shale weathering can also significantly influence the budgets of Os and U in rivers and CO2 in rivers and the atmosphere. Using dissolved Re in rivers as a proxy, it is estimated that ∼(6-9) × 108 kg y−1 of black shales are being weathered in the Ganga and Yamuna basins in the Himalaya. Weathering of such amounts of black shales can account for the reported concentrations of Os and U in these rivers. Furthermore, if the weathering results in the conversion of organic carbon in the black shales to CO2, it would release ∼2 × 105 mol of CO2 km−2 y−1 in the Yamuna and Ganga basins in the Himalaya, comparable to the CO2 consumption from silicate weathering.  相似文献   

16.
The relationship between pyritic sulfur content (Spyr) and organic carbon content (Corg) of shales analyzed from the New Albany Group depends upon Corg. For samples of <6 wt.% Corg, Spyt, and Corg are strongly correlated (r = 0.85). For Corg-“rich” shales (>6 wt.%), no Spty-Corg, correlation is apparent. The degree of Fe pyritization (DOP) shows similar relationships to Corg. These C-S-Fe relationships suggest that pyrite formation was limited by the availability of metabolizable organic carbon in samples where Corg < 6 wt.% and by the availability of reactive Fe for samples where Corg > 6 wt.%. Apparent sulfur isotope fractionations relative to contemporaneous seawater sulfate (Δ34S) for pyrite formation average −40% for non-calcareous shales and −25%. for calcareous shales. Δ34S values become smaller with increasing Corg, Spyt, and DOP for all Corg-“poar” (<6 wt%) and some Corg-“nch” (<6 wt.%) shales. These trends suggest that pyrite formation occurred in a closed system or that instantaneous bacterial fractionation for sulfate reduction decreased in magnitude with increasing organic carbon content. The isotopic trends observed in the New Albany Group are not necessarily representative of other shales having a comparable range of organic carbon content, e.g. Cretaceous shales and mudstones from the western interior of North America (GAUTIER, 1986). Δ34S values in the remainder of the Corg-rich New Albany Group shales are relatively large (−38 to −47%.) and independent of Corg, Spyr, and DOP, which suggests that pyrite in these shales formed mostly at or above the sediment-water interface by precipitation from an isotopically uniform reservoir of dissolved H2S.  相似文献   

17.
The applications of the187Re-187Os isotope pair as a petrogenetic and geologic tracer are increasing in recent years due to several advances in the chemical extraction and purification of Re and Os, occurring at ppb levels in environmental samples, and in the precise determination of the Os isotope composition. We have established in our laboratory; based on available methods, chemical procedures and Negative Thermal Ionisation Mass Spectrometric techniques for the measurement of Re-Os concentrations in environmental samples and the Os isotope composition in them. Using these techniques, we are able to determine187Os/186Os ratios with a precision of ∼ 1% (±2σμ; twice the standard error of the mean) in several tens of picogram of Os. Preliminary analysis of black shales from the Lower Tal section of the Maldeota phosphorite mine yields a mean187Re-187Os model age of 597 ± 30 Ma. The187Os/186Os and Os concentration in black shales of the Lesser Himalaya range from 8 to 96 and 0.02 to 13 ng g-1 respectively. The mean187Os/186Os in these samples is ∼ 25, significantly higher than the crustal value of ∼ 10.5, suggesting that these black shales could be an important source of radiogenic Os to the rivers draining the Himalaya and to the steady increase in187Os/186Os of the oceans through the Cenozoic.  相似文献   

18.
Several transects made of correlated stratigraphic sections and well logs have been constructed spanning southern Tunisia and the Algerian Sahara (Tinrhert) for comparison with earlier results obtained in the Saharan Atlas. The study is based on facies analysis, sedimentology, biostratigraphy focused on ammonites and foraminifers) as well as whole rock geochemistry (δ13C). These suggest that the entire northern Sahara Platform underwent marine flooding that commenced just prior to the onset of the global positive δ13C shift documented for the Cenomanian–Turonian boundary. This flooding occurred in two phases. The first phase is expressed by the deposition of deeper-water, light-coloured bioturbated mudstones overlying the shallow-water deposits comprising the local Cenomanian successions. But in some places in the Central Sahara (Hassi Messaoud area, Tihemboka Arch) as well as in the Saharan Atlas, shallow-water carbonates kept up locally with the relative sea-level rise to build up isolated carbonate platforms. The topographic lows or saddles between these areas could have been formed through differential accumulation rates. During the second phase, flooding resumed and black shales were deposited over the mudstones in the saddles. The occurrence of black shales in these saddles is limited to the northern edge of the platform (Saharan Atlas of Algeria, Gafsa Trough in southern Tunisia). On the platform, this phase is represented by the same kind of mudstones deposited during the first phase of the flooding (southern Tunisia), or by ammonite-rich chalks in the intra-cratonic basin of the Tinrhert (southern Algeria). Black-shale deposition ceased in the early Turonian. Based on the δ13C curve, the latest Cenomanian flooding of the Sahara Platform is roughly coeval with that documented for the US Western Interior.During the first phase of the transgression, that is before the occurrence of the large Whiteinella of the W. archeocretacea Zone in the black shale unit, planktic foraminifers are dominated by small globulose forms of the Hedbergella delrioensis type, associated with Heterohelicidae. Keeled forms (rotaliporids, dicarinellids) are scarce and always very small when present. Perhaps these dwarfed forms were adapted to the restricted environments of the extensive intracratonic seaways crossing the Saharan Platform to the Benoué Trough in Nigeria.  相似文献   

19.
The Early Cambrian black shale sequence of the Niutitang Formation in South China hosts a synsedimentary, organic carbon-rich, polymetallic sulfide layer with extreme metal concentrations, locally mined as polymetallic Ni–Mo–PGE–Au ore. In combination with previously reported data, we present Mo isotope, platinum-group element (PGE), and trace and rare-earth element (REE) data for the polymetallic sulfide ores and host black shales from four mine sites (Dazhuliushui and Maluhe in Guizhou Province, and Sancha and Cili in Hunan Province, respectively), several hundred kilometers apart. The polymetallic sulfide ores have consistently heavy δ98/95Mo values of 0.94 to 1.38‰ (avg. 1.13 ± 0.14‰, 1σ, n = 11), and the host black shale and phosphorite have slightly more variable δ98/95Mo values of 0.81‰ to 1.70‰ (n = 14). This latter variation is due to variable paleoenvironmental conditions from suboxic to euxinic, and partly closed-system fractionation in isolated marine sedimentary basins. Both the polymetallic sulfides and host black shales show PGE distribution patterns similar to that of present-day seawater, but different from those of ancient submarine-hydrothermal deposits and modern submarine hydrothermal fluids. The polymetallic sulfide bed has a generally consistent metal enrichment by a factor of 107 compared to present-day seawater. PAAS-normalized REE + Y patterns of the polymetallic sulfide bed are characterized by a remarkably positive Y anomaly, consistent with an origin of the REE predominantly from seawater. Small positive Eu anomalies in some of the sulfide ores could reflect minor hydrothermal components involved. The Mo isotope, PGE, and trace and rare-earth element geochemical data suggest that metals in the polymetallic Ni–Mo–PGE–Au sulfide ore layer were scavenged mostly from Early Cambrian seawater, by both in-situ precipitation and local re-deposition of sulfide clasts.  相似文献   

20.
《Applied Geochemistry》2000,15(6):777-784
In connection with the discovery of a new type of Pt deposit in low-rank brown coals and black shales, the interaction of Pt-bearing aqueous solutions with fractionated organic matter (asphaltenes and asphaltenic acids) was studied at 200–400°C and 1 kbar total pressure. It was found that chemical sorption onto the organic matter lowers Pt content in the aqueous solutions by about two orders of magnitude relative to organic-free systems. Thermal maturation of the asphaltenes leads to its aromatization and concomitant sorption of Pt from n×10−4 mPt (mol per kg of dry matter) at 200°C to n×10−2 mPt at 400°C. Thus, the Pt chemisorption on activated carbonized organic matter may be an effective mechanism of Pt accumulation in C-bearing rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号