首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our specimen of the cultured Emiliania huxleyi strain (CCMP1742, also known as NEPCC55a) that provides the benchmark for -based paleothermometry has started producing, for reasons yet unclear, major amounts of three new alkenones identified as ω15,22-C35 methyl ketone, ω15,22-C36 ethyl ketone and ω16,23-C36 methyl ketone. Comparison of these structures with those established now by the same OsO4 derivatization method applied to the di-unsaturated C37, C38 and C39 alkenones typically found in this organism provides insight into the possible pathway for their biosynthesis. Isothermal batch culture experiments also show the content and composition of these new compounds change systematically and quite significantly in cells when subjected to environmental conditions such as nutrient depletion, variation in light availability and prolonged darkness. Alkenones of similarly unusual short-chain length are evident in suspended particulate materials from present day surface waters in the Ligurian Sea (Mediterranean) and in two different Holocene time horizons (Unit I and Unit II deposits) in Black Sea sediments. However, the positions of the double bonds are different from those that we now report in our culture, implying a different biosynthetic sequence. These alkenones are most likely derived from another, as yet unknown, haptophyte species. If this other organism accounts for all documented occurrences of these compounds in natural samples, then either it has a capacity for growth over a remarkably wide salinity range or surface water salinity in the early Holocene Black Sea may not have been as low as is currently believed.  相似文献   

2.
Excess N from agriculture induces eutrophication in major river systems and hypoxia in coastal waters throughout the world. Much of this N is from headwaters far up the watersheds. In turn, much of the N in these headwaters is from ground-water discharge. Consequently, the concentrations and forms of N in groundwater are important factors affecting major aquatic ecosystems; despite this, few data exist for several species of N in groundwater and controls on speciation are ill-defined. Herein, we report N speciation for a spring and well that were selected to reflect agricultural impacts, and a spring and well that show little to no agricultural-N impact. Samples were characterized for NO3, NO2, N2O, NH4+, urea, particulate organic N(), and dissolved organic N(). These analytes were monitored in the agricultural spring for up to two years along with other analytes that we reported upon previously. For all samples, when oxidized N was present, the dominant species was NO3 (88-98% of total fixed N pool) followed by (<4-12%) and only trace fractions of the other N analytes. In the non-agriculturally impacted well sample, which had no quantifiable NO3 or dissolved O2, comprised the dominant fraction (68%) followed by NH4+ (32%), with only a trace balance comprised of other N analytes. Water drawn from the well, spring and a wetland situated in the agricultural watershed also were analyzed for dissolved N2 and found to have a fugacity in excess of that of the atmosphere. H2O2 was analyzed in the agricultural spring to evaluate the O2/H2O2 redox potential and compare it to other calculated potentials. The potential of the O2/H2O2 couple was close in value to the NO3/NO2 couple suggesting the important role of H2O2 as an O2-reduction intermediate product and that O2 and NO3 are reduced concomitantly. The O2/H2O2 and NO3/NO2 couples also were close in value to a cluster of other inorganic N and Fe couples indicating near partial equilibrium among these species. Urea mineralization to NO2 was found to approach equilibrium with the reduction of O2 to H2O2. By modeling as amide functional groups, as justified by recent analytical work, similar thermodynamic calculations support that mineralization to NO2 proceeds nearly to equilibrium with the reduction of O2 to H2O2 as well. This near equilibration of redox couples for urea- and -oxidation with O2-reduction places these two couples within the oxidized redox cluster that is shared among several other couples we have reported previously. In the monitored agricultural spring, [NO3] was lower in the summer than at other times, whereas [N2O] was higher in the summer than at other times, perhaps reflecting a seasonal variation in the degree of denitrification reaction progress. No other N analytes were observed to vary seasonally in our study. In the well having no agricultural-N impact, Corg/Norg = 5.5, close to the typical value for natural aqueous systems of about 6.6. In the agricultural watershed Corg/Norg varied widely, from ∼1.2 to ?9.  相似文献   

3.
4.
利用混合气体的标准样品对激光拉曼探针进行标定,可以快速准确地对包裹体中的无机及有机气相组分进行定量分析。而常用的商用钢瓶装混合气体标样,存在费用高、气体组成单一固定等缺点。本文设计了一套在线标样制备装置,提出一种在线配置不同浓度和压力条件下混合气体标样的方法。利用高纯度(纯度99.999%)的N2、CH4以及CO2钢瓶气,经过在线混合增压,在5 MPa和10 MPa条件下制备了N2摩尔分数为30%、50%和70%的N2-CH4以及N2-CO2混合气体在线标样。该方法制备的标样与70%N2+30%CO2的商用钢瓶气标样对比表明,CO2与N2的拉曼相对峰高以及相对峰面积值的误差在4%以内,具有较高的准确度和重现性。通过不同压力和浓度条件下CH4以及CO2的拉曼相对定量因子测定表明,气体的相对定量因子在5~10 MPa压力条件下与压力及组成无关。地质样品应用结果表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,为激光拉曼标定、气体组成原位测量等提供了一种新的技术思路。  相似文献   

5.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

6.
Using fission and alpha track radiography techniques, we have measured partition coefficients (D) for the actinide elements Th, U and Pu between diopsidic clinopyroxene, whitlockite [β-Ca3 (PO4)2] and silicate liquid at 20kbar. Equilibrium partitioning at the crystal-liquid interface is assumed, and corrections for actinide zoning have been applied to the measured D values. Reproducibility for both actinide and minor element D values is carefully examined as a criterion for crystal-liquid interface equilibrium. The data are mostly compatible with interface equilibrium except for experiments at high cooling rates ( ? 30 deg/hr). Partition coefficients for Th/U/Pu of about 0.002/0.002/0.06 are measured for clinopyroxene and 1.2/0.5/3.4 for whitlockite. At an oxygen fugacity of 10?8.5, Pu is much more readily incorporated into the crystalline phases than is U or Th because of the importance of trivalent Pu. The DPu(cpx) is similar to D(cpx) of the light rare earths supporting the concept of Pu/(rare earth) dating.  相似文献   

7.
Phosphoinnelite, an analogue of innelite with P > S, has been found in a peralkaline pegmatite vein crosscutting calcite carbonatite at the phlogopite deposit, Kovdor pluton, Kola Peninsula. Cancrinite (partly replaced with thomsonite-Ca), orthoclase, aegirine-augite, pectolite, magnesioarfvedsonite, golyshevite, and fluorapatite are associated minerals. Phosphoinnelite occurs as lath-shaped crystals up to 0.2 × 1 × 6 mm in size, which are combined typically in bunch-, sheaf-, and rosettelike segregations. The color is yellow-brown, with vitreous luster on crystal faces and greasy luster on broken surfaces. The mineral is transparent. The streak is pale yellowish. Phosphoinnelite is brittle, with perfect cleavage parallel to the {010} and good cleavage parallel to the {100}; the fracture is stepped. The Mohs hardness is 4.5 to 5. Density is 3.82 g/cm3 (meas.) and 3.92 g/cm3 (calc.). Phosphoinnelite is biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V (meas.) is close to 90°. Optical orientation is Z^c ∼ 5°. Chemical composition determined by electron microprobe is as follows (wt %): 6.06 Na2O, 0.04 K2O, 0.15 CaO, 0.99 SrO, 41.60 BaO, 0.64 MgO, 1.07 MnO, 1.55 Fe2O3, 0.27 Al2O3, 17.83 SiO2, 16.88 TiO2, 0.74 Nb2O5, 5.93 P2O5, 5.29 SO3, 0.14 F, −O=F2 = −0.06, total is 99.12. The empirical formula calculated on the basis of (Si,Al)4O14 is (Ba3.59Sr0.13K0.01)Σ3.73(Na2.59Mg0.21Ca0.04)Σ3.04(Ti2.80Fe 0.26 3+ Nb0.07)Σ3.13[(Si3.93Al0.07)Σ4O14(P1.11S0.87)Σ1.98O7.96](O2.975F0.10)Σ3.075. The simplified formula is Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3. The mineral is triclinic, space group P or P1. The unit cell dimensions are a = 5.38, b = 7.10, c = 14.76 ?; α = 99.00°, β = 94.94°, γ = 90.14°; and V = 555 ?3, Z = 1. The strongest lines of the X-ray powder pattern [d, ? in (I)(hkl)] are: 14.5(100)(001), 3.455(40)(103), 3.382(35)(0 2), 2.921(35)(005), 2.810(40)(1 4), 2.683(90)(200, 01), 2.133(80)( 2), 2.059(40)(204, 1 3, 221), 1.772(30)(0 1, 1 7, 2 2, 2 3). The infrared spectrum is demonstrated. An admixture of P substituting S has been detected in the innelite samples from the Inagli pluton (South Yakutia, Russia). An innelite-phosphoinnelite series with a variable S/P ratio has been discovered. The type material of phosphoinnelite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? I.V. Pekov, N.V. Chukanov, I.M. Kulikova, D.I. Belakovsky, 2006, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2006, No. 3, pp. 52–60. Considered and recommended by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 9, 2005. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 4, 2005 (proposal 2005-022).  相似文献   

8.
Being the heaviest fraction of crude oils, asphaltenes are liable to aggregate, and other molecules in the oils can be steadily adsorbed onto, and even occluded inside the macromolecular structures of the asphaltenes. These occluded compounds inside the asphaltenes can survive over geological time in oil reservoirs owing to effective protection by the macromolecular structures of the asphaltenes. The asphaltenes of a crude oil (ZG31) from the central Tarim Basin, NW China, were hierarchically degraded by increasing the amount of H2O2/CH3COOH to release the occluded compounds. Besides the common components, series of even numbered n-alk-1-enes and 3-ethylalkanes were detected among the occluded compounds. Comparison of the biomarker distributions and the compound-specific C isotopic results between the compounds from the maltenes and those from the occluded fraction, the ZG31 reservoir was suggested to have been charged multiple times, with different charges being derived from different strata of source rocks.  相似文献   

9.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

10.
Calorimetric measurements of fusion enthalpies for Ni2SiO4 and Co2SiO4 olivines were carried out using a high-temperature calorimeter, and Ni and Co partitioning between olivine and silicate liquid was analyzed using the measured heats of fusion. The fusion enthalpy of Co2SiO4 olivine measured by transposed-temperature drop calorimetry was 103 ± 15 kJ/mol at melting point (1688 K). The fusion enthalpy of Ni2SiO4 olivine was calculated based on the enthalpies of liquids in the system An50Di50-Ni2SiO4 measured by transposed-temperature drop calorimetry at 1773 K, and was 221 ± 26 kJ/mol at its metastable melting point (1923 K). The fusion enthalpy of Ni2SiO4 is the largest among those of olivine group, this is caused by the large crystal field stabilization energy of six-coordinated Ni2+ in olivine. The larger fusion enthalpy of Ni2SiO4 can account for the large and variable partition coefficient of Ni between olivine and silicate liquid. Based on the comparison between partition coefficients calculated from thermodynamic data and those observed in partition experiments, it is considered that the magnitude of partition coefficients is primarily dependent on the heats of fusion of the components. Furthermore, the activity coefficients for Ni-, Co- and Mn-bearing components in magmatic liquid are nearly of the same magnitude.  相似文献   

11.
Agricultural grasses cover a major part of the land surface in temperate agro-ecosystems and contribute significantly to the formation of soil organic matter. Crop-derived lipids are assumed to be responsible for fast carbon turnover in soils. Differences in lipid distribution patterns between crops following C3 and C4 photosynthesis pathways have rarely been described, but could be useful for source apportionment of crop-derived input into soils or sediments. The distribution of long chain n-carboxylic acids (C22, C24, C26) reveals significant differences between crop plants following either the C3 or the C4 photosynthetic carbon fixation pathway. The plant compartments leaves, stems and roots of C4 plants contain relatively large proportions (> 40%) of n-C24 carboxylic acid when compared to C3 plants. These reveal larger relative proportions of n-C22 and n-C26 acids, whose relative abundance is subject to change between different plant compartments and during the growing season. The carboxylic acid ratio [CAR = n-C24/(n-C22 + n-C26) carboxylic acids] provides distinct ratios for C4 (> 0.67) and C3 crops (< 0.67) and can thus be used as a molecular marker for the differentiation of crop plant biomass. In combination with the bulk stable carbon isotopic composition (δ13C) the CAR can be used as a tool for the estimation of the C4 derived carbon proportion in soils or sediments.  相似文献   

12.
地震活动断裂带能够向大气释放大量的温室气体、放射性气体和有毒气体(CO_2、CH_4、Rn和Hg),并对大气环境的影响产生复杂的影响。利用静态暗箱法,对汶川M_s8.0地震破裂带CO_2、Rn和Hg脱气强度进行实地测量,并计算了CO_2和Hg脱气对大气的年贡献量。结果表明:(1)破裂带土壤气中CO_2、CH_4、Rn和Hg异常浓度最大值分别可以达到7.98%、2.38%、524.30k Bq/m~3和161.00ng/m~3;破裂带CO_2、Rn和Hg脱气平均通量是34.95g·m~(-2)d~(-1)、36.11m Bq·m~(-2)s~(-1)和26.56ng·m~(-2)h~(-1),最大值分别达到259.23g·m~(-2)d~(-1)、580.35m Bq·m~(-2)s~(-1)和387.67ng·m~(-2)h~(-1);(2)汶川Ms8.0地震破裂带向大气脱气的CO_2年贡献量是0.95Mt,Hg的年贡献量是15.94kg。汶川Ms8.0地震破裂带破裂CO_2、CH_4、Rn和Hg等的脱气强度,不仅与破裂带渗透率有关,还与断裂带浅部存在的气藏、煤层以及磷矿层等气体源有重要的联系。  相似文献   

13.
Dissolved tetrafluoromethane (CF4) and sulfur hexafluoride (SF6) concentrations were measured in groundwater samples from the Eastern Morongo Basin (EMB) and Mojave River Basin (MRB) located in the southern Mojave Desert, California. Both CF4 and SF6 are supersaturated with respect to equilibrium with the preindustrial atmosphere at the recharge temperatures and elevations of the Mojave Desert. These observations provide the first in situ evidence for a flux of CF4 from the lithosphere. A gradual basin-wide enhancement in dissolved CF4 and SF6 concentrations with groundwater age is consistent with release of these gases during weathering of the surrounding granitic alluvium. Dissolved CF4 and SF6 concentrations in these groundwaters also contain a deeper crustal component associated with a lithospheric flux entering the EMB and MRB through the underlying basement. The crustal flux of CF4, but not of SF6, is enhanced in the vicinity of local active fault systems due to release of crustal fluids during episodic fracture events driven by local tectonic activity. When fluxes of CF4 and SF6 into Mojave Desert groundwaters are extrapolated to the global scale they are consistent, within large uncertainties, with the fluxes required to sustain the preindustrial atmospheric abundances of CF4 and SF6.  相似文献   

14.
On the basis of recently reported data on the kinetics of carbon-13 exchange between CO2 and CH4 at temperatures above 500°C, first order rate constants log k = 11.16?10,190/T were derived allowing variations in Δ, the difference in the isotopic composition of coexisting CO2 and CH4, to be evaluated as a function of initial composition and cooling rate of the rising geothermal fluid. Observed Δ-values in geothermal discharges are likely to represent frozen in compositions attained after minimum residence times of 20 ka at 400°C or 10 Ma at 300°C. The carbon-13 contents of any biogenic gases are unlikely to have been affected by thermal re-equilibration at temperatures below 200°C. The chemical equilibrium involving CO2 and CH4 can be expected to proceed about a hundred times faster than isotopic equilibration.  相似文献   

15.
The solubility and incorporation mechanisms of water in synthetic and natural MgAl2O4 spinel have been investigated in a series of high-pressure/temperature annealing experiments. In contrast to most other nominally anhydrous minerals, natural spinel appears to be completely anhydrous. On the other hand, non-stoichiometric Al-rich synthetic (defect) spinel can accommodate several hundred ppm water in the form of structurally-incorporated hydrogen. Infrared (IR) spectra of hydrated defect spinel contain one main O-H stretching band at 3343-3352 cm−1 and a doublet consisting of two distinct O-H bands at 3505-3517 cm−1 and 3557-3566 cm−1. IR spectra and structural refinements based on single-crystal X-ray data are consistent with hydrogen incorporation in defect spinel onto both octahedral and tetrahedral O-O edges. Fine structure of O-H bands in IR spectra can be explained by partial coupling of interstitial hydrogen with cation vacancies, or by the effects of Mg-Al disorder on the tetrahedral site. The concentration of cation vacancies in defect spinel is a major control on hydrogen affinity. The commercial availability of large single crystals of defect spinel coupled with high water solubility and similarities in water incorporation mechanisms between hydrous defect spinel and hydrous ringwoodite (Mg2SiO4) suggests that synthetic defect spinel may be a useful low-pressure analogue material for investigating the causes and consequences of water incorporation in the lower part of Earth’s mantle transition zone.  相似文献   

16.
 Recently, the Hy-2a hydrous olivine (MgH2 SiO4)·3(Mg2SiO4) occurring as nanometre-sized inclusions in mantle olivines has been found by TEM, and has been suggested to be a new DHMS phase (Khisina et al. 2001). A model of the crystal structure of Hy-2a has been proposed as a 2a-superstructure of olivine with one Me2+ -vacant octahedral layer in the (1 0 0) plane per Hy-2a unit cell (Khisina and Wirth 2002). In the present study the crystal structure of Hy-2a hydrous olivine is optimized by ab initio calculations. The aims of this study are: (1) verification of the suggested models of Hy-2a hydrous olivine structure; (2) calculation of the most stable configurations for Hy-2a structure with minimum static lattice energy, by assuming a possible formation of Me2+ vacancies in either M1 or M2 octahedral sites; (3) determination of the position of protons and hydrogen bonds in the Hy-2a structure. Several different possible configurations of the Hy-2a structure are optimized. The results support the idea of a stable olivine structure with ordered planar-segregated OH-bearing defects oriented parallel to (1 0 0). The data obtained indicate a preferred stability of the Hy-2a structure with the protons associated with M1 vacancies and bonded with O1 and O2 oxygen sites. The relative energy values of the optimized Hy-2a structure configurations correlate as a rule with the average shifts of atoms from their positions in pure forsterite structure. Received: 7 February 2002 / Accepted: 23 October 2002  相似文献   

17.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

18.
The cumulative association constant (β2) for the geochemically important aqueous complex UO2[HPO4]2?2 has been determined by potentiometric titration in Na2HPO4-UO2(NO3)2 solutions in the pH range 3.9–4.7, at ionic strengths below 0.024 molal with the Newton-Raphson method used to compute β2 from the chemical analytical data. Based on 25 measurements we obtain logβ2 = 18.3 ± 0.2 at 25°C. From the same experiments we compute that the association constant of UO2OH+ is 8.9 ± 0.1, in disagreement with the value of 8.3 ± 0.3 for this constant given by Baes and Mesmer (1976).  相似文献   

19.

湿地是温室气体二氧化碳(CO2)和甲烷(CH4)的主要来源之一,在全球碳循环中发挥着重要作用。由于CH4在百年尺度上的全球增温潜势是CO2的45倍,因此深入研究湿地CO2:CH4的排放比例及其影响因素对准确理解和预测湿地碳循环过程及其对未来全球变化的响应具有重要意义。本文采用文献整合分析方法,对比了不同类型湿地中CO2:CH4排放比例的特征及其影响因素。结果表明,藓类泥炭沼泽、滨海湿地和稻田中CO2:CH4排放比例显著高于草本沼泽、河流湿地和湖泊湿地等其他类型湿地;相关性分析研究发现,湿地CO2:CH4排放比例与pH和水位显著负相关,与盐度显著正相关。可见,藓类泥炭沼泽低水位和低pH抑制CH4排放是导致其CO2:CH4排放比例较高的重要原因,而滨海湿地高盐分抑制CH4排放是其CO2:CH4排放比例高的重要原因。与自然湿地相比,稻田CO2:CH4排放比例高与其人为施肥和稻草还田抑制CH4排放有关。此外,大气温度、土壤温度、降水量、土壤含水率等因子也对湿地CO2:CH4排放比例具有重要影响,尽管它们之间的线性相关关系不显著。目前,湿地CO2:CH4排放比例和影响因素仍存在很大的不确定性,未来亟待加强不同类型湿地CO2:CH4排放比例及其关键影响因素研究。

  相似文献   

20.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号