首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report extends previous work ([Louda et al., 1998a] and [Louda et al., 1998b]. Chlorophyll degradation during senescence and death. Organic Geochemistry 29, 1233–1251.) in which we detailed type-I (alteration) and -II (destruction) degradation of chlorophyll with representative fresh water phytoplankton. The present study covers similar experiments with marine phytoplankton, namely, a cyanobacterium (“ANA” Anacystis sp), a coccolithophore (“COC” Coccolithophora sp.), a dinoflagellate (“GYM” Gymnodinium sp.) and two diatoms (“CYC” Cyclotella meneghiniana and “THAL” Thalassiosira sp.). Mg loss (‘pheophytinization') was rapid and continuous in all species under room-oxic conditions and slow or sporadic under anoxic conditions. The proportion of dephytylated pigments (pheophorbides-a, chlorophyllides-a), relative to the phytylated forms (chlorophyll-a, pheophytins-a), increased over the first year under room-oxic conditions and in room-anoxic conditions only in “CYC”. Pheophorbide-a was converted to pyropheophorbide-a within 15 months only in “THAL” and “ANA”, and slightly in “COC”. After 9–15 months of oxic incubation, “COC” was found to contain traces of purpurin-18 phytyl ester. Consideration of carotenoid pigments is also included herein. All fucoxanthin containing species, except “THAL”, exhibited conversion of fucoxanthin to fucoxanthinol in room-oxic conditions. Diadinoxanthin was rapidly de-epoxidized to give diatoxanthin within the first 2–4 weeks. Diatoxanthin then disappeared from all species by 15 months with a concurrent increase in a pigment which we tentatively identify as a cis-zeaxanthin. Incubations of pure cultures are found to be an effective way by which to model the early type-I reactions for both chlorophylls and carotenoids. The influence of oxygen during senescence-death and the onset of early diagenesis is of paramount importance. The absence of oxygen and, by inference, aerobic microbiota, retards the breakdown of these pigments dramatically.  相似文献   

2.
Reduction of the C-3 vinyl group to an ethyl substituent is a key, yet poorly understood, event in the diagenetic pathway linking chlorophyll a to sedimentary alkyl porphyrins. Laboratory simulation experiments employing conditions that mimic those of natural anoxic environments (aqueous media, low temperature, presence of H2S and limitation of oxygen) lead to partial conversion of the chlorophyll a derivative methyl pyrophaeophorbide a to mesopyrophaeophorbide a via reduction of the C-3 vinyl substituent mediated by H2S. The mild conditions employed, and the apparent susceptibility of methyl pyrophaeophorbide a to reductive transformation, implies that reduction mediated by H2S could be a widespread process occurring in anoxic depositional environments. Our findings have implications for the geological preservation of chlorins and other biological markers and provide clear evidence that reactions involving H2S are important in the geochemical reduction of sedimenting organic matter and can occur at temperatures within the range for natural environments.  相似文献   

3.
In April 2000, we collected box cores from five stations along a cross-shelf transect on the Louisiana (LA) continental shelf. Novel esters of carotenols and chlorins (carotenoid chlorin esters, CCEs), which are highly specific grazing markers, were identified in surface and deep sediments (>10 cm) from the LA shelf. Chlorophyll-a inventory indicated that CCEs are one of the major decay products of chlorophyll-a in shelf sediments. Abundances of total CCEs (9-18%) in surface sediments along the cross-shelf transect were comparable to the abundance of pheophytin-a, pyropheophytin-a, and total steryl chlorin esters (SCEs). Prior work has identified four CCEs which have dehydrated fucoxanthin/fucoxanthinol as a substitute alcohol of phytol. We report on four newly identified CCEs associated with nondehydrated fuxocanthin/fucoxanthinol esterified to (pyro)pheophorbide-a. These nondehydrated CCEs were generally present in lower concentrations than their dehydrated counterparts, but were detectable by atmospheric pressure chemical ionization (APCI) mass spectrometry coupled with high-performance liquid chromatography (HPLC). We attributed differences between this study and previous work to the time allowed for predepositional decay and grazing processes to occur. The rapid sedimentation of CCEs in the shallow water column (ca. 10 m) on the LA shelf allowed for effective burial of all CCEs compared to the deeper water column regions sampled by previous work. This speculation is supported by the fact that the concentrations of CCEs with nondehydrated fucoxanthin/fucoxanthinol were extremely low in sediments from the site on the outer LA shelf with a deeper (253 m) water column. We also tentatively identified an additional CCE and its isomer as fucoxanthinol didehydrate pyropheophorbide-a ester. We suggest that the formation and transformation of CCEs are primarily controlled by the following three biologically mediated reactions: demethoxycarbonylation, dehydration, and deacetylation. Our laboratory copepod grazing experiment also confirmed that CCEs can be excellent class-specific biomarkers of zooplankton grazing on phytoplankton.  相似文献   

4.
Microalgal culture experiments to track chlorophyll-a (chl-a) transformation during senescence were characterised by the production of demetallated Type I chl-a transformation products in Pavlova gyrans and by the production of oxidative Type I transformation products in Isochrysis galbana. Dark-induced senescence in I. galbana produced a different distribution of Type I products from nutrient depletion induced senescence. Several novel Type I compounds were detected, including a chl-d like compound in I. galbana and a chl-a precursor like compound in P. gyrans. Type II chl-a transformation products were detected in the dissolved phase of I. galbana cultures; this is the first report of such compounds associated with marine algae.  相似文献   

5.
Fatty acids isolated in sedimentary black barite (BaSO4) from Arkansas and Nevada were identified by gas chromatography-mass spectroscopy. The dominant or major fatty acids found in these beds of barite are C16:0, C18:0, and C18:1. The occurrence and distribution of these acids in this type of rock may serve as “molecular fingerprints” of microbial biogeochemical processes. The organic matter and associated microorganisms are shown to be trapped within the finely crystalline barite, thus forming a closed system for microbial diagenesis.Important differences that occur in the distribution of the lesser or minor fatty acids probably result from: (1) the nature of the progenitor organic detritus in the environment of barite deposition: and (2) the subsequent degree of microbiological alteration of the parent organic debris swept into and trapped in the depositional environment.Three general models of sedimentary environments are proposed in which anoxic conditions may prevail and where barium sulfate (BaSO4) may precipitate: (1) in a silled basin with semi-restricted circulation; (2) on an outer continental shelf where the slope is encroached upon by water of the oxygen minimum layer; (3) on a low-energy, inner shelf or semi-restricted embayment impinged by a wedge of anoxic water.The major geochemical and geological parameters which are believed to be the significant factors controlling the formation and high grade of these organic-rich, black bedded barites are: (1) a unique source of barium-rich fluid that only contains trace amounts of other elements; (2) the presence of an anoxic bottom environment within the depositional basin; (3) a reflux source of sulfate ion; (4) an adequate source of organic matter.The results of this study may serve as guidelines for future exploration in similar, untested sedimentary basins, especially those with rocks of middle Paleozoic age.  相似文献   

6.
Particulate organic carbon (POC), dissolved organic carbon (DOC), and plant pigments (chlorophylls and carotenoids) were measured approximately bimonthly from March 1992 to October 1993 in the Sabine-Neches estuary (Sabine Lake region), located on the Texas-Louisiana border. High freshwater inflow into this shallow turbid estuary results in the shortest hydraulic residence time (ca. 7 d) of all Texas estuaries (Baskaran et al. in press). Annual averages of chlorophyll-a (3.0 μg l?1) and particulate organic carbon (1.1 mg l?1) in the water column were extremely low in comparison to other shallow estuaries. The highest chlorophyll-a concentrations were observed in October 1993, in the mid and lower regions of the estuary, during the lowest river discharge. Zeaxanthin and fucoxanthin concentrations suggested that much of the chlorophyll-a during this low flow period was represented by cyanobacteria and diatoms that entered from the Gulf of Mexico. The range of DOC concentrations was generally high (4.4–20.9 mg l?1) and were significantly correlated with POC, but not with chlorophyll-a concentrations. When total suspended particulate (TSP) concentrations were below 20 to 30 mg l?1, there were significant increases in %POC and %PON of the TSP. The unusually high POC: chlorophyll-a ratios (highest value of 1423) suggested that much of the POC contained low concentrations of chlorophyll-a that had degraded during transport from wetlands in the Sabine and Neches rivers. Based on these data, this estuary can be characterized as a predominantly heterotrophic system, with low light penetrance, short particle-residence times, high DOC, and low inputs from autochthonous carbon sources.  相似文献   

7.
The composition, productivity, and standing crop of net (>20 μm) and nano-(<20 μm) phytoplankton of Peconic Bay, Long Island, New York was examined from June 1978 through May 1979. Nanoplankton, primarily small solitary flagellates, chlorophytes, and diatoms, dominated from May through September accounting for 88.5% of the productivity and 88.1% of the standing crop (measured as chlorophyll a). An apparent net plankton bloom began in December and continued through March. The dominant organism through most of the winter bloom was the chain-forming diatom Skeletonema costatum (Grev.) Cl. Net plankton at this time represented 66.4% of the standing crop. For both size fractions, productivity/chlorophyll a (g C per g chl a per d, integrated through the euphotic zone) was a function of light energy over the year with the exception of a few sampling dates during the post-winter bloom period. Assimilation numbers (g C per g chl a per h at saturating light intensities) were a function of temperature between 0 and 20°C. Nitrogen deficiency did not appear to be a factor in regulating phytoplankton growth rate through the euphotic zone, as ratios of 14C assimilation for dark bottles enriched with NH3 and with no enrichment exhibited no relationship to environmental dissolved inorganic nitrogen concentrations. Zooplankton grazing pressure appeared to have been an important factor in regulating the upper limit of phytoplankton biomass and in influencing size fraction dominance. Dominance of one phytoplankton size fraction over the other on any given date was not based on physiological differences between the two groups since both fractions were composed of the same species. Apparent net phytoplankton blooms (in terms of productivity and chlorophyll a) were artifacts of increased chain lengths of nanoplankton diatoms such as Skeletonema costatum, and to a lesser extent, Thalassiosira nordenskioldii Cl. and Detonula confervacea (Cl.) Gran, rather than to the dominance of large, solitary cells.  相似文献   

8.
An improved three-band semi-analytical algorithm was developed for improving the performance of the three- and four-band algorithms, for chlorophyll-a concentration retrievals in the highly turbid waters of the Yellow River estuary. In this special case study of the Yellow River estuary, the optimal wavelengths of the improved three-band semi-analytical algorithm must meet the following requirements: the λ 1 and λ 2 must be restricted to within the range 660–690 nm, and the λ 3 must be longer than 750 nm. The algorithm calibration and validation results indicate that the improved three-band algorithm indeed produces superior performance in comparison to both the three- and four-band algorithms in retrieving chlorophyll-a concentration from the extremely coastal waters of the Yellow River estuary. Comparing the improved three-band algorithm to the original three- and four-band algorithm, the former minimizes the influence of backscattering by suspended solids in near-infrared regions, while the three-band algorithm has a much stronger error tolerance ability than the four-band algorithm. These findings imply that if an atmospheric correction scheme for visible and near-infrared bands is available, the improved three-band algorithm may be used for quantitative monitoring of chlorophyll-a concentration in turbid coastal waters with similar bio-optical properties, although some local bio-optical information or improved models may be required to reposition the optimal band positions of the algorithm.  相似文献   

9.
Magmatic pyrochlores from the Lueshe syenite–carbonatite complex from the northeastern part of Democratic Republic of Congo (ex-Zaı̈re) are characterized by Ta/Nb ratios in an increasing order from pyroxenite, calcite-carbonatite (sövite), silicate xenoliths (nodules) to syenite. Substitutions involving Nb, Ta, Ti and REE have been precisely described. Hydrothermal alteration of Lueshe pyrochlore involves the substitution of Na++F=VA+VY and Ca+O=VA+VY (VA=A-site vacancy and VY=Y-site vacancy). In calcite carbonatite, hydrothermal alteration of pyrochlore took place during and after the precipitation of ancylite-(Ce), strontianite, celestite, baryte and fayalite according to a fluid composition of relatively low pH, aNa+, aCa2+ and aHF, and high aSr2+ and aLREE3+. The supergene alteration is characterized by complete leaching of Na, Ca and F and partial incorporation of K, Ba, Sr and Ce resulting in the formation of kali-, bario-, strontio- and ceriopyrochlore respectively. The Na-poor pyrochlore may be an intermediate variety corresponding to an alteration stage between the hydrothermal and weathered pyrochlores. The IR spectroscopic study has indicated that the weathered pyrochlore is a hydrated variety containing two bands of OH vibration modes at 3413 and 1630 cm−1. During hydrothermal and supergene alterations, the cations at B-site remain relatively constant. The variable chemical compositions of the pyrochlores from the Lueshe complex represent geochemical memories of the different alteration conditions including the variation in the oxidation–reduction environment.  相似文献   

10.
Major lipid classes isolated from 3 sections of the sediment profile of Upton Broad, a shallow lake formed about 500 yr ago, were correlated with input and with changes attributable to early diagenesis. Surficial sediment contains lipids characteristics of the known recent algal and microbial input; preservation of chlorophyll pigments and absence of appropriate markers suggest that diagenesis is minimal. Older deposits from the eutrophic phase of the lake's history contain higher levels of bacterial lipids and diagenetic products. The earliest sediment contains lipids characteristic of terrigenous input subjected to more extensive diagenesis than the younger sediment. Recognition of early diagenesis in anoxic sediment suggests that distributions of the shorter-chain homologous free n-alkanes, alkanols and alkanoic acids result from microbial synthesis using material initially deposited at the sediment surface, rather than partial preservation of the lipids of primary source organisms.  相似文献   

11.
A model of the spectral diffuse attenuation coefficient of downwelling irradiance was constructed for Chincoteague Bay, Maryland, and the Rhode River, Maryland. The model is written in terms of absorption spectra of dissolved yellow substance, the chlorophyll-specific absorption of phytoplankton, and absorption and scattering by particulate matter (expressed as turbidity). Based on published light requirements for submersed aquatic vegetation (SAV) in Chesapeake Bay, the model is used to calculate the range of water-quality conditions that permit survival of SAV at various depths. Because the model is spectrally based, it can be used to calculate the attenuation of either photosynthetically active radiation (PAR, equally weighted quanta from 400 nm to 700 nm) or photosyntheticallyusable radiation (PUR, the integral of the quantum spectrum weighted by the pigment absorption spectrum of SAV). PUR is a more accurate measurement of light that can be absorbed by SAV and it is more strongly affected by phytoplankton chlorophyll in the water column than is PAR. For estuaries in which light attenuation is dominated by turbidity and chlorophyll, the model delimits regions in which turbidity alone (chlorophyll <10 μg 1?1), chlorophyll alone (turbidity <1 NTU) or both factors (chlorophyll >10 μg 1?1, turbidity >1 NTU) must be reduced to improve survival depths for SAV.  相似文献   

12.
Freshwater pulses to subtropical estuaries often occur on time scales less than 1 week. In particular, introduction of low-level pulses are potentially important during the dry season (November–April) when freshwater is scarce. Determining potential ecological benefits of pulses requires an innovative method of data acquisition at the appropriate spatial and temporal scales. The South Florida Water Management District conducted a pilot study to assess changes in water column attributes with pulse releases to the Caloosahatchee River Estuary (CRE) from January to April 2012. An average inflow of 450 cfs was targeted for a series of freshwater pulses. This study utilized an onboard, flow-through system to record surface water temperature, salinity (S), pH, dissolved oxygen, turbidity, and in situ chlorophyll a (in situ CHL) at 5 s intervals along the 42-km length of the estuary. On each of seven research cruises, the vessel stopped at multiple stations to conduct vertical water column profiles. Salinity increased throughout the CRE as inflow decreased during the study period. Simple correlation and partial least squares regression were used to determine that the downstream locations of the S?=?10 isohaline and the maximum CHL concentration (in situ CHLmax) were positively related to inflow. While the in situ CHLmax was located 12–20 km downstream on five of the cruises, it was only a few kilometer from the estuary head on the first (1/12) and last (4/11) dates. It is possible that two circumstances related to freshwater inflow accounted for this pattern. First, water column stratification before January could have stimulated remineralization and primary production. Second, inflow ceased as water temperature increased to 26.0 °C by April to promote algal growth. Further study of the relationships among inflow, water level, flushing time, and CHL is warranted. Future efforts will examine the range of wet season discharge by incorporating a sensor for colored dissolved organic matter to fully connect inflow, salinity, submarine light, and phytoplankton attributes in the CRE.  相似文献   

13.
Analyses of forty-two United States humic coals have revealed a striking divergence between chlorophyll diagenesis in coals when compared to the more widely studied marine sediments, shales, asphalts and petroleums. Porphyrins of humic coals have been found to be dominated by the ETIO-series, to lack members above C-32, and, in lower ranked samples (e.g. Sub-bituminous-B, high volatile C) to exhibit mass spectral envelopes with unique even-carbon number predominances. The weighted average mass, as well as the carbon number maximum (viz. mode), of these coal porphyrin homologies has been found to decrease as rank increases. The generation of porphyrins of the ETIO-series is suggested as occurring both during early coal formation, including oxidative scission of the isocyclic ring at the phorbide stage, and later during the catagenic alteration of surviving DPEP-series porphyrins. A preliminary study of chlorophyll diagenesis in a South Florida peat partially substantiates this suggestion and has further shown that the coal porphyrins can be derived from bacterial, as well as higher plant, chlorophylls.  相似文献   

14.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   

15.
Isotope-geochemical features of the formation of carbon and oxygen isotopic compositions in sedimentary and diagenetic carbonates are considered. Isotopic criteria for the identification of early diagenesis zone are proposed. The transition from sedimentogenesis to diagenesis (upper boundary of the early diagenesis zone) is accompanied by the alteration of carbon isotopic composition in the HCO 3(hydrosphere)–HCO 3(pore water of sediment)system. The lower boundary of early diagenesis zone is registered by the alteration of oxygen isotopic composition in the pore water of sediments and authigenic carbonates.  相似文献   

16.
The current geochemical study of n-alkanes, steranes, and triterpanes in bitumen from the Late Maastrichtian–Paleocene El Haria organic-rich facies in West of Gafsa, southern Tunisia, was performed in order to characterize with accuracy their geochemical pattern. The type of organic matter as deduced from n-alkanes, steranes, and triterpanes distributions is type II/III mixed oil/gas prone organic matter. Isoprenoids and biomarkers maturity parameters (i.e., T s/T m, 22S/(22S?+?22R) of the C31 αβ-hopanes ratios, 20S/(20R?+?20S) and ββ/(ββ?+?αα) of C29 steranes), revel that the organic-rich facies were deposited during enhanced anoxic conditions in southern Tunisa. The organic matter is placed prior to the peak stage of the conventional oil window (end of diagenesis–beginning of catagenesis). All these result are suggested by total organic carbon analysis, bitumen extraction and liquid chromatography data. Thus, the n-alkanes, triterpane, and steranes study remains valuable and practical for geochemical characterization of sedimentary organic matter.  相似文献   

17.
Measurements of sediment geochemistry and porewater speciation have been made using eight cores containing turbidite sections from the Madeira and Nares Abyssal Plains. The results have been used to evaluate how the diagenetic chemistry of iodine in these sediments compares with that in sediments undergoing steady-state diagenesis. The behaviour of iodine is related to the development of a redox front within the turbidite, between the organic-rich anoxic sediment and its oxic cap, and the downward migration of the front through the turbidite with time. In contrast to the steady-state case, sediment I contents and I/ C ratios increase downwards through the oxidised section reaching a maximum at the redox front (up to ~ 100 μ/g I; molar I/C~ 20 × 10−4) below which values drop dramatically (I/C ~ 5 × 10−4). A strong iodate enrichment (up to ~3 μmol kg−1) is observed in the oxidised section of the sediment. At the front interconversion of I and IO3 species occur and below the front porewater IO3 is absent and I~ concentrations increase with depth (as in other cases of anoxic diagenesis) up to ~ 10 μmol kg. In the oxidised section of the sediment the I enrichment has been supplied by upward transport of iodide with the increasing I content, with depth being accounted for by progressive diagenetic enrichment with time.  相似文献   

18.
Particulate matter and interfacial sediment from a seasonally anoxic coastal salt pond were analyzed for fatty acids and sterols to examine variations in organic sources, and compositional changes across the oxic-anoxic interface in the water column and at the sediment-water interface. Fatty acid distributions in suspended particles varied seasonally and as a function of depth. Fatty acids of algal origin (e.g. 16:3, 16:4, 18:3, 18:4) were abundant in particles in oxic surface waters, but these labile components were depleted in particles from the anoxic zone which instead were enriched in bacterial fatty acids (e.g. 16:1Δ9, 18:1Δ11, anteiso-C15). Sterol distributionsvaried less than fatty acid distributions and particles throughout the water column reflected an upper water algal source with little in situ alteration. There was evidence for an in situ conversion of Δ5-stenols to 5(α)H-stanols in suspended particles in the anoxic zone. Sinking particles and the interfacial sediment were compositionally similar to each other, but different from suspended particles. These data reflect differences in particle source, transport and transformation processes occuring in the water column.  相似文献   

19.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   

20.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号