首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Biomarker compositions of particulate organic matter (POM) from the oligotrophic Lake Brienz and the eutrophic Lake Lugano (both Switzerland) are compared, in order to obtain information about organic matter (OM) production and transformation processes in relation to water column stratification. Eutrophic conditions in Lake Lugano are reflected by enhanced alkalinity, elevated total organic carbon (TOC) and chlorin contents compared with Lake Brienz. Lower δ13C values of dissolved inorganic carbon (DIC) in Lake Lugano reflect enhanced OM respiration in the water column.Differences in OM dynamics between both lakes, as well as seasonal variations, are evidenced by TOC-normalised concentration profiles of total fatty acids (FAs) and total neutrals. In Lake Brienz, the results reflect the relative contributions of primary productivity and refractory, allochthonous OM to POM, governed by particle load and interflows due to density stratification. The depth trends at Lake Lugano are a result of high primary productivity, water column stratification and associated particle load in the upper layers, as well as microbially induced degradation close to the chemocline and greater preservation under anoxic conditions. Minor differences exist with regard to the OM composition. In both lakes, FA distributions and the composition of n-alkanols indicate a predominant autochthonous OM source (algae, zooplankton, bacteria). Inputs of OM from diatoms are reflected in highly-branched isoprenoid (HBI) alkenes, 16:1 n-FAs and 24-methylcholesta-5,22-dien-3β-ol (either epibrassicasterol or brassicasterol). Differences in relative proportions of n-C16 vs. n-C18 FAs and alkanols, respectively, as well as in the percentages of C27, C28 and C29 sterols relative to the sum of sterols are related to differences in the abundances of chrysophytes, diatoms and green algae within the euphotic zone of both lakes as well as in bacterial activity and soil in-wash. High relative proportions of cholesterol in the autumn samples, most pronounced at Lake Lugano, were attributed to an increased input from zooplankton grazing in the water column.Differences in OM degradation processes are reflected in slightly higher chlorin index values and higher relative proportions of saturated vs. unsaturated n-FAs in Lake Lugano. Higher contents of branched chain FAs, 16:1ω7 n-FA, and enhanced 18:1ω7/18:1ω9 n-FA ratios suggest enhanced bacterial biomass in the water column of Lake Lugano close to the chemocline. Increasing proportions of saturated n-FAs and n-alkanols with increasing water depth, most distinct in the autumn for both lakes, argue for intensified bacterial activity and degradation of OM during autumn. High relative contents of sterols and low n-alkanol concentrations in POM close to the chemocline at Lake Lugano during spring are interpreted to reflect higher primary productivity in the photic zone, OM export to the deeper parts and enhanced degradation rates of more labile constituents (i.e. C13–C20 n-alkanols), as compared to Lake Brienz.  相似文献   

2.
Archaeal lipids record paleosalinity in hypersaline systems   总被引:2,自引:0,他引:2  
We present an ecologically based biomarker method for estimating past salinity, especially in hypersaline conditions. The relative amounts of acyclic diether and tetraether membrane lipids synthesized by Archaea correlate with salinity from 0–250 practical salinity units (psu) in modern settings. We examined the preservation of this lipid biomarker–salinity relationship in ancient sedimentary organic matter using samples from two sequences of marls and diatomites deposited just prior to the Messinian Salinity Crisis. Salinity estimates were consistent with expected absolute salinity, as well as the amplitude of variations leading up to the Messinian Salinity Crisis. This lipid biomarker approach to salinity reconstruction complements existing paleosalinity proxies because (i) Archaea survive and thrive over a broad salinity range, well beyond that of haptophyte algae and other plankton which form the microfossil record and (ii) it provides fine salinity resolution for the wide range broadly defined as hypersaline. With the proxy, there is the potential to provide novel insights into salinity variation within desiccating basins in climatically sensitive seas (e.g. Dead Sea, Permian Delaware Basin), evolution of brines, timing of onset of hypersaline conditions and evaporite deposition.  相似文献   

3.
We investigated the distribution of lipids in Lower Triassic sedimentary rocks (252–247 myr) from South China, including a shallow water microbialite in the uppermost section of the outcrop. Archaeal derived hydrocarbons were the major constituents of the microbialite from the latest Early Triassic. Among these, we detected (i) abundant C40 acyclic and monocyclic biphytanes (possibly derived from glycerol dialkyl glycerol tetraether lipids) and their degradation products, C30–39 pseudohomologues and (ii) a C25 head-to-tail linked (regular) isoprenoid hydrocarbon [possibly derived from dialkyl glycerol diether lipids (DGDs)] and its degradation products, C21–24 pseudohomologues and abundant pristane and phytane. Through combination of compound-specific stable carbon isotope analysis of isoprenoid hydrocarbons, which had average δ13C values of −35‰ to −30‰, and their molecular distribution, it was not possible to unambiguously define the archaeal source for the biphytanes in the microbialite. The δ13C values for pristane and phytane were similar to those for head-to-tail linked C21–25 isoprenoids; potential source organisms for these compounds were halophilic archaea. Except for methane seep microbialites, no other ancient or recent phototrophic microbialites have been reported to contain predominantly archaeal isoprenoid hydrocarbons. Our findings suggest the presence of a new type of microbialite.  相似文献   

4.
We measured archaeal lipid distributions from globally distributed samples of freshwater, marine, and hypersaline suspended particulate matter. Cluster analysis of relative lipid distributions identified four distinct groups, including: (1) marine epipelagic (<100 m) waters, (2) marine mesopelagic (200-1500 m) and upwelling waters, (3) freshwater/estuarine waters, and (4) hypersaline waters. A pronounced difference in lipid composition patterns is the near absence of ring-containing glycerol dialkyl glycerol tetraethers (GDGTs) at high salinity. Different archaeal communities populate marine (mesophilic Crenarchaeota and Euryarchaeota), and hypersaline environments (halophilic Euryarchaeota) and community shifts can regulate differences in lipid patterns between marine and hypersaline waters. We propose that community changes within meosphilic marine Archaea also regulate the lipid patterns distinguishing epipelagic and mesopelagic/upwelling zones. Changes in the relative amounts of crenarchaeol and caldarchaeol and low relative abundances of ringed structures in surface waters differentiate lipids from the epipelagic and mesopelagic/upwelling waters. Patterns of lipids in mesopelagic (and upwelling) waters are similar to those expected of the ammonia-oxidizing Group I Crenarchaeota, with predominance of crenarchaeol and abundant cyclic GDGTs; non-metric multidimensional analysis (NMDS) shows this pattern is associated with high nitrate concentrations. In contrast, limited culture evidence indicates marine Group II Euryarchaeota may be capable of producing mainly caldarchaeol and some, but not all, of the ringed GDGTs and we suggest that these organisms, along with the Crenarchaeota, contribute to lipids in epipelagic marine waters. Calculated TEX86 temperatures in mesopelagic samples (reported here and in published data sets) are always much warmer than measured in situ temperatures. We propose lipids used in the temperature proxy derive from both Euryarchaeaota and Crenarchaeota, and observed values of TEX86 are subject to changes in their ecology as influenced by nutrient fluctuations or other perturbations. Applications of published core-top TEX86-SST correlations require that (1) the surface waters are always composed of similar communities with the same temperature response and (2) that deeper water GDGT production is not transported to the sediments. Our lipid distribution patterns demonstrate both surface-water archaeal community differences (which accompany greater nutrient influxes, shoaling of mesopelagic Crenarchaeota during upwelling periods, and possibly due to an influx of terrestrial Archaea), and changes in organic matter transport through the water column can affect the distribution of lipids recorded in sediments. We therefore suggest that reported temperature shifts in ancient applications indicate TEX86 lipids recorded not only temperature changes, but also changes in archaeal ecology, nutrient concentrations, and possibly oceanographic conditions.  相似文献   

5.
Archaea have unique glycerol dialkyl glycerol tetraether (GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86. This research is to validate proposed GDGT-proxies for paleotemperature determination in the South China Sea (SCS). Samples were collected from core-top sediments (0–5 cm) in the northern SCS. Total lipids were extracted to obtain core GDGTs, which were identified and quantified using liquid chromatography-mass spectrometry (LC-MS). The abundance of isoprenoidal GDGTs (iGDGTs) ranged from 271.5 ng/g dry sediment to 1266.3 ng/g dry sediment, whereas the branched GDGTs (bGDGTs), supposedly derived from terrestrial sources, ranged from 22.2 ng/g dry sediment to 56.7 ng/g dry sediment. The TEX86-derived sea surface temperatures ranged from 20.9 °C in the coast (water depth < 160 m) to 27.9 °C offshore (water depth > 1000 m). TEX86-derived temperatures near shore (<160 m water depth) averaged 23.1 ± 2.5 °C (n = 4), which were close to the satellite-derived winter mean sea surface temperature (average 22.6 ± 1.0 °C, n = 4); whereas the TEX86-derived temperatures offshore averaged 27.4 ± 0.3 °C (n = 7) and were consistent with the satellite mean annual sea surface temperature (average 26.8 ± 0.4 °C, n = 7). These results suggest that TEX86 may record the sea surface mean annual temperature in the open ocean, while it likely records winter sea surface temperature in the shallower water.  相似文献   

6.
The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5–1.8 × 109 cells g−1 dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs cell−1. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.  相似文献   

7.
A diverse collection of globally distributed soil samples was analyzed for its glycerol dialkyl glycerol tetraether (GDGT) membrane lipid content. Branched GDGTs, derived from anaerobic soil bacteria, were the most dominant and were found in all soils. Isoprenoid GDGTs, membrane lipids of Archaea, were also present, although in considerably lower concentration. Crenarchaeol, a specific isoprenoid membrane lipid of the non-thermophilic Crenarchaeota, was also regularly detected and its abundance might be related to soil pH. The detection of crenarchaeol in nearly all of the samples is the first report of this type of GDGT membrane lipid in soils and is in agreement with molecular ecological studies, confirming the widespread occurrence of non-thermophilic Crenarchaeota in the terrestrial realm. The fluvial transport of crenarchaeol and other isoprenoid GDGTs to marine and lacustrine environments could possibly bias the BIT index, a ratio between branched GDGTs and crenarchaeol used to determine relative terrestrial organic matter (TOM) input. However, as crenarchaeol in soils is only present in low concentration compared to branched GDGTs, no large effect is expected for the BIT index. The fluvial input of terrestrially derived isoprenoid GDGTs could also bias the TEX86, a proxy used to determine palaeo surface temperatures in marine and lacustrine settings and based on the ratio of cyclopentane-containing isoprenoid GDGTs in marine and lacustrine Crenarchaeota. Indeed, it is shown that a substantial bias in TEX86-reconstructed sea and lake surface temperatures can occur if TOM input is high, e.g. near large river outflows.  相似文献   

8.
To determine where and when glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in lakes are produced, we collected descending particles in Lake Lucerne (Switzerland) using two sediment traps (at 42 and 72 m water depth) with a monthly resolution from January 2008 to late March 2009. Suspended particulate matter (SPM) was monthly filtered from the water column at three different depths. The potential application of GDGTs in palaeoenvironmental and palaeoclimatic reconstructions was investigated by comparing core lipids and their relative GDGT distribution, with lake water temperatures throughout the year. Fluxes of GDGTs and their concentrations in the water column vary according to a seasonal pattern, showing a similar trend in the SPM and sediment traps. Fluxes and concentrations of isoprenoid GDGTs increase with depth, maximum values being observed in the deeper part of the water column, indicating production of isoprenoid GDGTs by Thaumarchaeota in the deep (∼50 m), aphotic zone of Lake Lucerne. The flux-weighted averages of the proxies TEX86 (0.27) and BIT (0.03) based on the total extracted GDGTs are similar at both trap depths. A sediment core from the same location showed that in the first few centimetres of the core TEX86 and BIT values of 0.29 and 0.07, respectively, are similar to those recorded for descending particles and SPM, indicating that the sedimentary TEX86 records the annual mean temperature of deeper waters in Lake Lucerne. TEX86 values are slightly higher below 20 cm in the core. This offset is interpreted to be caused by the present-day trophic state of the lake, which probably resulted in a deeper niche of the Thaumarchaeota. Branched GDGTs represent only a minor fraction of the total GDGTs in the lake and their origin remains unclear. Our data reveal that GDGTs in lakes have a large potential for palaeoclimatic studies but indicate that knowledge of the system is important for accurate interpretation.  相似文献   

9.
The Red Sea represents an extreme marine environment, with high salinity, high temperature and low level of nutrients, complicating the application of standard geochemical palaeotemperature proxies. In order to investigate the applicability of the TEX86 (TetraEther indeX of GDGTs with 86 carbons) proxy for sea surface temperature (SST) in the Red Sea, the distribution of glycerol dialkyl glycerol tetraether membrane lipids (GDGTs) in sediments from the Red Sea and the Gulf of Aden were examined. Against expectations, TEX86 values for the Red Sea do not show a simple linear relationship with SST and deviate from the global core top calibration. In the northern Red Sea, at temperatures between 25 and 28 °C, the values increase linearly with SST, whereas in the southern Red Sea, at temperatures above 28 °C, TEX86 decreases with increasing temperature. Factors like seasonality and depth of production, salinity and nutrient availability, as well as diagenetic overprint or influence of allochtonous terrestrial lipids, cannot explain this pattern. However, the observed TEX86 relationship with SST could be explained by the presence of a hypothetical endemic Crenarchaeota population in the Red Sea with a specific TEX86 vs. SST relationship. In the Southern Red Sea, a two-component mixing model implies an exponential decrease in the endemic population towards the Gulf of Aden. Thus, the application of the TEX86 as a palaeotemperature proxy in the Red Sea is likely only possible for the northern Red Sea area with the specific SST vs. TEX86 relationship determined in this study and potentially for the whole Red Sea basin during glacials, when water exchange with the Indian Ocean was more restricted than today and the endemic archaeal lipid distribution was not affected by transport from the Indian Ocean. Our results suggest that distinct populations of Crenarchaeota in extreme environments such as evaporitic basins may have different membrane composition, necessitating application of another calibration than the global core top calibration for TEX86 palaeothermometry.  相似文献   

10.
Temporal changes in paleoproductivity of Lake Biwa (Japan) over the past 32 kyr have been studied by analyzing bulk organic carbon and photosynthetic pigments (chlorins) in the BIW95-5 core. Primary productivity was estimated on the assumption of C/Norg values of 8 for autochthonous organic matter (OM) and 25 for allochthonous OM and using an equation developed for the marine environment. The estimate indicates that primary productivity ranges from 50 to 90 g C m?2 yr?1 in the Holocene, while it is ~60 g C m?2 yr?1 on average in the last glacial. Pheophytin a and pheophorbide a are the major chlorins. A downcore profile of chlorin concentration normalized to autochthonous organic carbon (OC) shows a decreasing trend. Chlorin productivity was corrected by removal of the effect of post-burial chlorin degradation. The temporal profile of chlorin productivity thereby obtained resembles that from autochthonous OC.The difference in primary productivity between the Holocene and the glacial for the lake is markedly smaller than that for Lake Baikal situated in the boreal zone. This difference between the two lakes is probably caused by the difference in their climatic conditions, such as temperature and precipitation. Precipitation at Lake Biwa is relatively large during the glacial and the Holocene because of the continuous influence of the East Asian monsoon. Lake Baikal precipitation is generally small as a result of control by the continental (Siberia) climate regime. In addition, a significant difference in productivity between the glacial and the Holocene for Lake Baikal may be essentially controlled by the hydrodynamic systems in the lake.Lake Biwa terrigenous OM input events occurred at least five times over the period 11–32 kyr BP, suggesting enhanced monsoon activity. Molecular examination of the layer with a large input of terrigenous OM during the Younger Dryas indicates that concentrations of terrigenous biomarkers such as n-C27–C31 alkanes, lignin phenols, cutin acids, ω-hydroxy acids and C29 sterols are high, suggesting that soil OM with peat-like material entered the lake as a result of flooding. An enhanced sedimentation rate in the last 3000 years might have been partially caused by agricultural activity around the lake.  相似文献   

11.
The lithostratigraphic framework of Lake Van, eastern Turkey, has been systematically analysed to document the sedimentary evolution and the environmental history of the lake during the past ca 600 000 years. The lithostratigraphy and chemostratigraphy of a 219 m long drill core from Lake Van serve to separate global climate oscillations from local factors caused by tectonic and volcanic activity. An age model was established based on the climatostratigraphic alignment of chemical and lithological signatures, validated by 40Ar/39Ar ages. The drilled sequence consists of ca 76% lacustrine carbonaceous clayey silt, ca 2% fluvial deposits, ca 17% volcaniclastic deposits and 5% gaps. Six lacustrine lithotypes were separated from the fluvial and event deposits, such as volcaniclastics (ca 300 layers) and graded beds (ca 375 layers), and their depositional environments are documented. These lithotypes are: (i) graded beds frequently intercalated with varved clayey silts reflecting rising lake levels during the terminations; (ii) varved clayey silts reflecting strong seasonality and an intralake oxic–anoxic boundary, for example, lake‐level highstands during interglacials/interstadials; (iii) CaCO3‐rich banded sediments which are representative of a lowering of the oxic–anoxic boundary, for example, lake level decreases during glacial inceptions; (iv) CaCO3‐poor banded and mottled clayey silts reflecting an oxic–anoxic boundary close to the sediment–water interface, for example, lake‐level lowstands during glacials/stadials; (v) diatomaceous muds were deposited during the early beginning of the lake as a fresh water system; and (vi) fluvial sands and gravels indicating the initial flooding of the lake basin. The recurrence of lithologies (i) to (iv) follows the past five glacial/interglacial cycles. A 20 m thick disturbed unit reflects an interval of major tectonic activity in Lake Van at ca 414 ka bp . Although local environmental processes such as tectonic and volcanic activity influenced sedimentation, the lithostratigraphic pattern and organic matter content clearly reflect past global climate changes, making Lake Van an outstanding terrestrial archive of unprecedented sensitivity for the reconstruction of the regional climate over the last 600 000 years.  相似文献   

12.
Sediment and water quality were investigated in an artificial coastal lake (Saemangeum Lake, Korea) that was formed by constructing a 33-km long sea-dyke offshore from the mouths of two adjacent rivers, which discharge into the Yellow Sea. Sediment showed drastic increases in fine fraction (silt and clay) after the dyke construction. TN, TP, and OC contents in the sediment showed the similar spatial variation to that of fine fraction. A mixing model indicated benthic fluxes of nutrients such as PO4, NH4, and SiO2, which were considerably elevated during the summer monsoon season. It is revealed that this phenomenon was associated with the development of strong salinity stratification, elevated water temperature, and increased groundwater discharge. However, a change in the sedimentation environment due to dyke construction is suggested as the primary reason for the enhanced benthic fluxes.  相似文献   

13.
Anammox, the microbial anaerobic oxidation of ammonium by nitrite to produce dinitrogen gas, has been recognized as a key process in both the marine and freshwater nitrogen cycles, and found to be a major sink for fixed inorganic nitrogen in the oceans. Ladderane lipids are unique anammox bacterial membrane lipids that have been used as biomarkers for anammox bacteria in recent and past environmental settings. However, the fate of ladderane lipids during diagenesis is as of yet unknown. In this study, we performed oxic degradation experiments (at 20-100 °C) with anammox bacterial biomass to simulate early diagenetic processes occurring in the water column and at the sediment-water interface. Abundances of C18 and C20 ladderane lipids decreased with increasing temperatures, testifying to their labile nature. The most abundant products formed were ladderane lipids with a shorter alkyl side chain (C14 and C16 ladderane fatty acids), which was unambiguously established using two-dimensional NMR techniques on an isolated C14-[3]-ladderane fatty acid. The most pronounced production of these short-chain lipids was at 40 °C, suggesting that degradation of ladderane lipids was microbially mediated, likely through a β-oxidation pathway. An HPLC-MS/MS method was developed for the detection of these ladderane alteration products in environmental samples and positively tested on various sediments. This showed that the ladderanes formed during degradation experiments also naturally occur in the marine environment. Thus, short-chain ladderane lipids may complement the original longer-chain ladderane lipids as suitable biomarkers for the detection of anammox processes in past depositional environments.  相似文献   

14.
Quantitative climate reconstructions are fundamental to understand long-term trends in natural climate variability and to test climate models used to predict future climate change. Recent advances in molecular geochemistry have led to calibrations using glycerol dialkyl glycerol tetraethers (GDGTs), a group of temperature-sensitive membrane lipids found in Archaea and bacteria. GDGTs have been used to construct temperature indices for oceans (TEX86 index) and soils (MBT/CBT index). The aim of this study is to examine GDGT-temperature relationships and assess the potential of constructing a GDGT-based palaeo-thermometer for lakes. We examine GDGT-temperature relationships using core top sediments from 90 lakes across a north-south transect from the Scandinavian Arctic to Antarctica including sites from Finland, Sweden, Siberia, the UK, Austria, Turkey, Ethiopia, Uganda, Chile, South Georgia and the Antarctic Peninsula. We examine a suite of 15 GDGTs, including compounds used in the TEX86 and MBT/CBT indices and reflecting the broad range of GDGT inputs to small lake systems.GDGTs are present in varying proportions in all lakes examined. The TEX86 index is not applicable to our sites because of the large relative proportions of soil derived and methanogenic components. Similarly, the MBT/CBT index is also not applicable and predicts temperatures considerably lower than those measured. We examine relationships between individual GDGT compounds and temperature, pH, conductivity and water depth. Temperature accounts for a large and statistically independent fraction of variation in branched GDGT composition. We propose a GDGT-temperature regression model with high accuracy and precision (R2 = 0.88; RMSE = 2.0 °C; RMSEP = 2.1 °C) for use in lakes based on a subset of branched GDGT compounds and highlight the potential of this new method for reconstructing past temperatures using lake sediments.  相似文献   

15.
Acyclic phytanyl diether glycerol and biphytanyl ether lipids have been quantified in two modern swamp sediment cores in concentrations ranging up to 360 μg/ml porewater. Methanogenic bacteria are the only known source organisms which can inhabit the swamp sediments. Variations in relative abundance between these lipids may reflect taxonomic changes in methanogen populations or the stage of growth. Maxima in methanogen lipid concentrations coincide with local maxima of 13C of organic matter, possibly the result of a pool effect on CO2 or acetate. Methane production estimates calculated from lipid concentrations in swamp sediments range from 0.1 to 1.3 mmol cm−2 yr−1, values which are consistent with published methane fluxes.  相似文献   

16.
Our analysis of lipid molecular fossils from a Lake Titicaca (16° S, 69° W) sediment core reveals distinct changes in the ecology of the lake over an ∼25,000-yr period spanning latest Pleistocene to late Holocene time. Previous investigations have shown that over this time period Lake Titicaca was subject to large changes in lake level in response to regional climatic variability. Our results indicate that lake algal populations were greatly affected by the changing physical and chemical conditions in Lake Titicaca. Hydrocarbons are characterized by a combination of odd-numbered, mid- to long-chain (C21-C31) normal alkanes and alkenes. During periods when lake level was higher (latest Pleistocene, early Holocene, and late Holocene), the C21n-alkane, and the C25 and C27 alkenes dominate hydrocarbon distributions and indicate contribution from an algal source, potentially the freshwater alga Botryococcus braunii. The C30 4 α-methyl sterol (dinosterol) increases sharply during the mid-Holocene, suggesting a greatly increased dinoflagellate presence at that time. Long-chain alkenones (LCAs) become significant during the early Holocene and are highly abundant in mid-Holocene samples. There are relatively few published records of LCA detection in lake sediments but their occurrence is geographically widespread (Antarctica, Asia, Europe, North America). Lake Titicaca represents the first South American lake and the first low-latitude lake in which LCAs have been reported. LCA abundance and distribution may be related to the temperature-dependent response of an unidentified algal precursor. Although the LCA unsaturation indices cannot be used to determine absolute Lake Titicaca temperatures, we suspect that the published LCA U37K unsaturation calibrations can be applied to infer relative temperatures for early to mid-Holocene time when LCA concentrations are high. Using these criteria, the U37K unsaturation indices suggest relatively warmer temperatures in the mid-Holocene. In contrast to previous speculation, lipid analysis provides little evidence of a greatly increased presence of aquatic plants during the mid-Holocene. Instead, it appears that a few algal species were dominant in the lake. Based on the dramatic rise in abundances of LCAs and dinosterol during the early to mid-Holocene, we suspect that the algal producers of these compounds rose in response to a combination of physical and chemical changes in the lake. These include temperature, salinity, and alkalinity changes that occurred as lake level dropped sharply during a multi-millennial drought affecting the Central Andean Altiplano.  相似文献   

17.
In this study, we use a combined biomarker and macrofossil approach to reconstruct the Holocene climate history recorded in Trifna Sø, Skallingen area, eastern North Greenland. Chronological information is derived from comparison of lithological, biogeochemical and macrofossil characteristics with a well‐dated record from nearby Lille Sneha Sø. Following local deglaciation around c. 8 cal. ka BP, the local peak warmth occurred between c. 7.4 and 6.2 cal. ka BP as indicated by maximum macrofossil abundances of warmth‐demanding plants (Salix arctica and Dryas integrifolia) and invertebrates (Daphnia pulex and Chironomidae). Warm conditions were dominated by terrestrial organic matter (OM) sedimentation as implied by the alkane‐based Paq ratio, but increased aquatic productivity is indicated when temperature was highest around 6.5 cal. ka BP. The n‐C29/n‐C31 alkane ratio shows that vegetation in the catchment was dominated by shrubs after deglaciation, but shifted towards relatively more grassy/herbaceous vegetation during peak warmth. After 5.4 cal. ka BP, the disappearance of warmth‐demanding plant and invertebrate macrofossils indicates cooling in the Skallingen area. This cooling was characterized by a significant shift towards dominance of aquatic OM sedimentation in Trifna Sø as implied by high Paq ratios. Cooling was also associated with a shift in vegetation type from dwarf‐shrub heaths towards relatively more herbaceous vegetation in the catchment, stronger erosion and more oligotrophic conditions in the lake. Our data show that mean air temperatures inferred using branched glycerol dialkyl glycerol tetraethers (brGDGTs) do not seem to accurately reflect the local climatic history. Irrespective of calibration, methylation of branched tetraethers (MBT) palaeothermometry cannot be reconciled with the macrofossil evidence and seems to be biased by either changing brGDGT sources (in situ vs. soil‐derived) or changing species assemblages and/or an unknown physiological response to changing environmental conditions at high latitude.  相似文献   

18.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   

19.
The saturated and unsaturated hydrocarbons of two samples (HD-19 and HD-21) from the same section of the Middle Eocene lacustrine Huadian oil shale in NE China were identified and shown to be mainly from algal and bacterial sources. Comparison of the two samples provided an opportunity to explore the contribution from telalginite to the hydrocarbon profiles. Cells identified from microscopy as Botryococcus in the telalginite of HD-21 were confirmed as belonging to the L race of B. braunii from the presence of monoaromatic lycopane derivatives and small amounts of several lycopadienes. Lycopane was abundant and was probably derived from biohydrogenation of lycopadienes and related lipids on the basis of δ13C values. Hopane distributions showed a dominance of those with the biological 17β,21β-stereochemistry, as expected for an immature shale, with low amounts of 17β,21α-hopanes (moretanes) and 17α,21β-hopanes. Two hopenes were also abundant and assigned as C29 and C30 neohop-13(18)-enes, which occurred together with the C29 and C30 hop-17(21)-enes. These had depleted carbon isotope values (−43.7‰ to −50.8‰), indicative of production by methane oxidizing bacteria (methanotrophs). The high proportion of hopanoids with carbon numbers < C32 indicates extensive post-depositional diagenetic alteration of bacteriohopanepolyols as well as a direct input of C30 hopanoids. The data clearly indicate that there was active utilization of methane in this lacustrine depositional setting, but isoprenoid hydrocarbon biomarkers for methanogens, such as pentamethylicosane (PMI) and squalane, were in surprisingly low abundance. It is possible that these bacterial contributions were present as polar lipids. The origins of an unusual C38 isoprenoid alkane assigned as bipristane are uncertain, but may be from methanogens. Steranes and sterenes were relatively minor components, but abundant diasterenes and 4-methyldiasterenes were present, reflecting significant conversion of the original lipid composition by way of clay-catalysed diagenesis. The biomarker data suggest that the bottom waters in the original depositional environment had low O2 content, but the sediments were probably neither sulfidic nor strongly reducing. The high content of organic matter in the shale likely reflects both high (but fluctuating) productivity due to eutrophic conditions in the overlying water and good preservation in the sediments.  相似文献   

20.
Aromatic hydrocarbons from benzene extracts of New Albany Shale were characterized. A biomarker that has a molecular weight of 546 and a structural configuration consistent with that of an alkyl-aromatic hydrocarbon (C40H66) was tentatively identified. It was found that the relative concentrations of the biomarker are indicative of differing levels of thermal maturity of the shale organic matter. A 40-carbon bicyclic carotenoid (C40H48) is proposed as the geochemical precursor of this biomarker. Thermal maturity of the shale organic matter can also be differentiated by observing differences in “fingerprints” as obtained by field-ionization mass spectrometry on the aromatic hydrocarbon fraction. Using this technique, we found that the more mature shale samples from southeastern Illinois contain more low molecular weight extractable aromatic hydrocarbons and the less mature shale samples from northwestern Illinois contain more high molecular weight extractable aromatic hydrocarbons. It was demonstrated that field-ionization and tandem mass spectrometric techniques through fingerprint and individual compound identification, are useful for shale aromatic hydrocarbon fraction characterization and for thermal maturation interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号