首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the methane in marine methane hydrates is mainly of microbial origin, information about the distribution of methanogens in subseafloor sediments is limited. To address this issue, we analyzed sediment core samples from two sites in the Nankai Trough, off the Pacific coast of central Japan, including those bearing methane hydrates from depths > 100 m below the seafloor (mbsf), for isopranyl ether-linked polar lipids (i.e. with polar head groups of phosphate, sugar, or both) as biomarkers of archaea, including methanogens. In most samples, including the deepest (381 mbsf), archaeol, and sn-2- and sn-3-hydroxyarchaeols were detected as their hydrolyzed derivatives. Concentrations of these three archaeal lipids correlated strongly with each other, suggesting a common biological source. The δ13C values of phytane derived from the phytanyl groups in the archaeal lipids were distinctly higher than those of methane, indicating that methanogens rather than anaerobic methanotrophic archaea were the major biological source. Depth profiles of polar sn-2-hydroxyarchaeol concentration were consistent with those of the potential methane production activity previously estimated from incubation of core sediments from the same sites. This observation, together with results of previous studies showing the presence of sn-2-hydroxyarchaeol mainly in shallow young sediments, strongly suggests that this polar lipid is a valid biomarker for in situ methanogens in sediments. There was a strong correlation between the concentration of polar sn-2-hydroxyarchaeol and that of total organic carbon, suggesting that bulk organic matter concentration is a primary control on the distribution of methanogens in sediments.  相似文献   

2.
The molecular and carbon isotopic compositions of polar isopranyl glycerol ether lipids, which are direct indicators of viable archaea, and neutral isopranyl glycerol ether lipids, which are derived from polar lipids via hydrolysis, in near-surface sediments from a methane seep in the Nankai Trough (off central Japan) were investigated. Procedures for extracting, separating and derivatizing polar and neutral ether lipids for detection using gas chromatography were first examined with one sediment sample and a cultivated methanogen. For all sediment samples, archaeol and hydroxyarchaeol were detected in both the polar and neutral ether lipid fractions. Acyclic and cyclic biphytanes were also detected in both types of lipid fractions after treatment with HI/LiAlH4 for ether cleavage and alkylation. The δ13C values of archaeol, sn-2-hydroxyarchaeol, and sn-3-hydroxyarchaeol in the sample from 0.82 m below the seafloor were lower than −100‰ relative to PDB, indicating that diverse living methanotrophic archaea are present in the seep sediments. Biphytanes released from polar ether lipids in the same sample were less depleted in δ13C (−71‰ to −36‰). The wide range of δ13C values suggests that the biphytanes were derived not only from methanotrophic but also from non-methanotrophic archaea, and that the relative contributions of the methanotrophic and non-methanotrophic archaea differed, depending on the biphytane compound. The vertical profiles and δ13C values of the neutral ether lipids were similar to those of the intact polar ether lipids, suggesting that neutral ether lipids derived from fossil archaea in the samples had mainly been lost by the time of sampling.  相似文献   

3.
Four representatives of methanogenic Euryarchaeota (Methanosarcina mazei strain Gö1, Methanosphaera stadtmanae, Methanobrevibacter smithii and Methanosaeta thermophila), the hyperthermophilic euryarchaeon Thermococcus kodakarensis and the halophilic euryarchaeon Haloferax volcanii were studied for their glycerol ether lipid composition. The predominant core membrane lipid in all of them was archaeol, which was accompanied by variable quantities of sn-2-hydroxyarchaeol in the methanogens M. mazei (Methanosarcinales) and M. stadtmanae (Methanobacteriales). All methanogenic and hyperthermophilic Euryarchaeota also contained comparatively high abundances of the glycerol dialkyl glycerol tetraether without a cyclopentane moiety (GDGT-0). The methanoarchaeon M. stadtmanae, in addition to GDGT-0, contained GDGT core lipid structures with 1–4 cyclopentane moieties (GDGTs 1–4). We also found minor amounts of a glycerol trialkyl glycerol tetraether (GTGT) and a glycerol dialkanol diether (GDD), both of which did not contain cyclopentane moieties, as well as methylated and dimethylated GDGT-0 in all the archaea with the exception of H. volcanii. Like its GDGT distribution, M. stadtmanae showed an extended range of GDD structures with up to two cyclopentane ring systems. Our results thus indicate that both methanogenic and hyperthermophilic Euryarchaeota may represent source organisms of GTGT-0, GDDs and methylated-GDGTs in natural environments. All the latter components have recently been reported to be ubiquitously distributed in marine sediments but their biological origin is largely unknown. Moreover, a suite of unsaturated GDGTs without a cyclopentane moiety and up to four double bonds in the hyperthermophile T. kodakarensis was tentatively assigned.  相似文献   

4.
The anaerobic oxidation of methane (AOM) with sulphate is the most important sink for methane in marine environments. This process is mediated by a consortium of methanotrophic archaea and sulphate reducing bacteria. So far, three groups of anaerobic methane oxidisers (ANME-1, -2 and -3) related to the methanogenic Methanosarcinales and Methanomicrobiales were discovered. The sulphate reducing partner of ANME-1 and -2 are two different eco-types of SRB related to the Desulfosarcina/Desulfococcus cluster (Seep-SRB1), whereas ANME-3 is associated with Desulfobulbus spp. (DBB). In this article, we reviewed literature data to assign statistically significant lipid biomarker signatures for a chemotaxonomic identification of the three known AOM communities. The lipid signatures of ANME-2/Seep-SRB1 and ANME-3/DBB are intriguingly similar, whereas ANME-1/Seep-SRB1 shows substantial differences to these AOM communities. ANME-1 can be distinguished from ANME-2 and -3 by a low ratio of the isoprenoidal dialkyl glycerol diethers sn2-hydroxyarchaeol and archaeol combined with a comparably low stable carbon isotope difference of archaeol relative to the source methane. Furthermore, only ANME-1 contains substantial amounts of isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), however, with the probable exception of the ANME-2c sub-cluster. In contrast to the ANME-1 archaea, the tail to tail linked hydrocarbon tetramethylhexadecane (crocetane) is unique to ANME-2, whereas pentamethylicosenes (PMIs) with 4 and 5 double bonds without any higher saturated homologues were only found in ANME-3. The sulphate reducing partner of ANME-1 can be discerned from those of ANME-2 and -3 by a low ratio of the fatty acids (FAs) C16:1ω5 relative to i-C15:0 and, although to a lesser degree, by a high abundance of ai-C15:0 relative to i-C15:0. Furthermore, substantial amounts of 13C depleted non-isoprenoidal monoalkyl glycerol ethers (MAGEs) were only found in the sulphate reducing partners of ANME-2 and -3. A differentiation of these SRB is possible based on the characteristic presence of the FAs cy-C17:0ω5,6 and C17:1ω6, respectively. Generally, the data analysed here show overlaps between the different AOM communities, which highlights the need to use multiple lipid signatures for a robust identification of the dominating microbes involved.  相似文献   

5.
Vegetation assemblages and associated disturbance regimes are spatially heterogeneous in mountain ecosystems throughout the world due to the complex terrain and strong environmental gradients. Given this complexity, numerous sites describing postglacial vegetation and fire histories are needed to adequately understand forest development and ecosystem responses to varying climate and disturbance regimes. To gain insight into long-term historical climate–fire–vegetation interactions in southeastern British Columbia, Canada, sedimentological and paleoecological analyses were performed on a sediment core recovered from a small subalpine lake. The pollen assemblages, stomata, and macroremains indicate that from 9500 to 7500 cal yr BP, Pinus-dominated forests occurred within the catchment and Alnus was also present. Climate was an important control of fire and fire frequency was highest at this time, peaking at 8 fires 1000 yr− 1, yet charcoal accumulation rates were low, indicative of low terrestrial biomass abundance. From 7500 to 4600 cal yr BP, Pinus decreased as Picea, Abies and Larix increased and fire frequencies decreased to 3–6 fires 1000 yr− 1. Since 7500 cal yr BP the fire regime varied at a millennial scale, driven by forest biomass abundance and fuel accumulation changes. Local scale (bottom-up) controls of fire increased in relative importance since at least 6000 cal yr BP.  相似文献   

6.
Ether lipids such as non-isoprenoid mono and dialkyl glycerol ethers (MAGEs and DAGEs) and archaeol have been found in carbonate rocks and mud rocks deposited during the Early and Middle Triassic (250–240 Ma). The oldest previous discovery of ether lipids is from Cretaceous black shale deposited during the Albian (112 Ma). Paleoenvironmental reconstruction using ether lipids has therefore not been conducted on pre-Cretaceous sediments. Archaeol derives from archaea (e.g. methanogenic, methanotrophic, halophilic and thermophilic archaea). The non-isoprenoid DAGEs and MAGEs likely derive from sulfate-reducing bacteria (SRB), which are restricted to anaerobic environments. The presence of ether lipids thus indicates that anoxic conditions expanded in the depositional and/or water column environment in the Qingyan area during the Early–Middle Triassic. These ether lipids may be useful for the reconstruction of paleoredox conditions and paleoecosystems in the area. Furthermore, their occurrence suggests that paleoenvironmental reconstruction using ether lipids may be possible throughout the Mesozoic and Cenozoic.  相似文献   

7.
We investigated anaerobic ammonium oxidation (anammox) in continental shelf and slope sediments of the Irish and Celtic Seas by using anammox specific ladderane biomarker lipids. We used the presence of an intact ladderane phospholipid as a direct indicator for living anammox bacteria, and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane core lipids as well as the intact ladderane phospholipid, in agreement with 15N-labeling experiments, which revealed anammox activity at all sites. Ladderane core lipid and intact ladderane phospholipid concentrations were significantly correlated (R2 = 0.957 and 0.464, respectively) with anammox activity over the transect of the continental shelf and slope sediments. In the Irish Sea (50-100 m water depth) highest abundances of the intact ladderane phospholipid were found in the upper 2 cm of the sediment, indicating a zone of active anammox. A sharp decline further down-core suggested a strong decrease in anammox biomass and rapid degradation of the intact lipids. In comparison, ladderane core lipids were 1-2 orders of magnitude higher in concentration than the intact ladderane phospholipid and accumulated as dead cell remnants with depth. In the slope sediments of the Celtic Sea both ladderane core lipids and the intact ladderane phospholipid were found in sediments at water depths ranging from 500 to 2000 m. Here, anammox seemed to be active at greater depths of the sediment (>2 cm). Mean abundances of both intact and core ladderane lipids in whole sediment cores increased downslope, indicating an increasing importance of anammox in deeper slope sediments.  相似文献   

8.
The availability of dissolved O2 can limit biodegradation of organic compounds in aquifers. Where O2 is depleted, biodegradation proceeds via anaerobic processes, including NO3-, Mn(IV)-, Fe(III)- and SO4-reduction and fermentation/methanogenesis. The environmental controls on these anaerobic processes must be understood to support implementation of management strategies such as monitored natural attenuation (MNA). In this study stable isotope analysis is used to show that the relative significance of two key anaerobic biodegradation processes (bacterial SO4 reduction (BSR) and methanogenesis) in a phenol-contaminated sandstone aquifer is sensitive to spatial and temporal changes in total dissolved phenols concentration (TPC) (= phenol + cresols + dimethylphenols) over a 5-a period. In general, 34SO4-enrichment (characteristic of bacterial SO4 reduction) is restricted spatially to locations where TPC < 2000 mg L−1. In contrast, 13C-depleted CH4 and 13C-enriched CO2 isotope compositions (characteristic of methanogenesis) were measured at TPC up to 8000 mg L−1. This is consistent with previous studies that demonstrate suppression of BSR at TPC of >500 mg L−1, and suggests that methanogenic microorganisms may have a higher tolerance for TPC in this contaminant plume. It is concluded that isotopic enrichment trends can be used to identify conditions under which in situ biodegradation may be limited by the properties of the biodegradation substrate (in this case TPC). Such data may be used to deduce the performance of MNA for contaminated groundwater in similar settings.  相似文献   

9.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

10.
Even if mires have proven to be relatively reliable archives over the temporal trends in atmospheric mercury deposition, there are large discrepancies between sites regarding the magnitude of the anthropogenic contribution to the global mercury cycle. A number of studies have also revealed significant differences in mercury accumulation within the same mire area. This raises the question of which factors, other than mercury deposition, affect the sequestration of this element in peat. One such factor could be vegetation type, which has the potential to affect both interception and retention of mercury. In order to assess how small-scale differences in vegetation type can affect mercury sequestration we sampled peat and living plants along three transects on a northern Swedish mire. The mire has two distinctly different vegetation types, the central part consists of an open area dominated by Sphagnum whereas the surrounding fen, in addition to Sphagnum mosses, has an understory of ericaceous shrubs and a sparse pine cover. A few main patterns can be observed in our data; (1) Both peat and Sphagnum-mosses have higher mercury content (both concentration and inventory) in the pine-covered fen compared to the open Sphagnum area (100% and 71% higher for peat and plants, respectively). These differences clearly exceed the 33% difference observed for lead-210, which is considered as a good analogue for atmospheric mercury deposition. (2) The differences in mercury concentration between peat profiles within a single vegetation type can largely be attributed to differences in peat decomposition. (3) When growing side by side in the open Sphagnum area, the moss species Sphagnum subsecundum has significantly higher mercury concentrations compared to S. centrale (24 ± 3 and 18 ± 2 ng Hg g−1, respectively). Based on these observations we suggest that species composition, vegetation type and decomposition can affect the mercury sequestration in a peat record, and that any changes in these properties over time, or space, have the potential to modify the mercury deposition signal recorded in the peat.  相似文献   

11.
Terrigenous organic matter (TOM) transfer from a watershed to a lake plays a key role in contaminants fate and greenhouse gazes emission in these aquatic ecosystems. In this study, we linked physiographic and vegetation characteristics of a watershed with TOM nature deposited in lake sediments. TOM was characterized using lignin biomarkers as indicators of TOM sources and state of degradation. Geographical information system (GIS) also allowed us to integrate and describe the landscape morpho-edaphic characteristics of a defined drainage basin. Combining these tools we found a significant and positive relationship (R2 = 0.65, p < 0.002) between mean slope of the watershed and the terrigenous fraction estimated by Λ8 in recent sediments. The mean slope also correlated with the composition of TOM in recent sediments as P/(V + S) and 3,5Bd/V ratios significantly decreased with the steepness of the watersheds (R2 = 0.57, p < 0.021 and R2 = 0.71, p < 0.004, respectively). More precisely, areas with slopes comprised between 4° and 10° have a major influence on TOM inputs to lakes. The vegetation composition of each watershed influenced the composition of recent sediments of the sampled lakes. The increasing presence of angiosperm trees in the watershed influenced the export of TOM to the lake as Λ8 increased significantly with the presence of this type of vegetation (R2 = 0.44, p < 0.019). A similar relationship was also observed with S/V ratios, an indicator of angiosperm sources for TOM. The type of vegetation also greatly influenced the degradation state of OM. In this study, we were able to determine that low-sloped areas (0-2°) act as buffer zones for lignin inputs and by extension for TOM loading to sediments. The relative contribution of TOM from the soil organic horizons also increased in steeper watersheds. This study has significant implications in our understanding of the fate of TOM in lacustrine ecosystems.  相似文献   

12.
Burial Lake in northwest Alaska records changes in water level and regional vegetation since ∼ 39,000 cal yr BP based on terrestrial macrofossil AMS radiocarbon dates. A sedimentary unconformity is dated between 34,800 and 23,200 cal yr BP. During all or some of this period there was a hiatus in deposition indicating a major drop in lake level and deflation of lacustrine sediments. MIS 3 vegetation was herb-shrub tundra; more xeric graminoid-herb tundra developed after 23,200 cal yr BP. The tundra gradually became more mesic after 17,000 cal yr BP. Expansions of Salix then Betula, at 15,000 and 14,000 cal yr BP, respectively, are coincident with a major rise in lake level marked by increasing fine-grained sediment and higher organic matter content. Several sites in the region display disrupted sedimentation and probable hiatuses during the last glacial maximum (LGM); together regional data indicate an arid interval prior to and during the LGM and continued low moisture levels until ∼ 15,000 cal yr BP. AMS 14C dates from Burial Lake are approximately synchronous with AMS 14C dates reported for the Betula expansion at nearby sites and sites across northern Alaska, but 1000-2000 yr younger than bulk-sediment dates.  相似文献   

13.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii, TW; Skeletonema costatum, SC) and two freshwater periphytic species (Achnanthidium minutissimum, AMIN; Navicula minima, NMIN) by combining adsorption measurements with surface complexation modeling. Adsorption kinetics was studied as a function of pH and initial metal concentration in sodium nitrate solution and in culture media. Kinetic data were consistent with a two-step mechanism in which the loss of a water molecule from the inner coordination sphere of the metal is rate limiting. Reversible adsorption experiments, with 3 h of exposure to metal, were performed as a function of pH (2-9), metal concentration in solution (10−9-10−3 M), and ionic strength (10−3-1.0 M). While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. Measurements of electrophoretic mobilities (μ) revealed negative surface potential for AMIN diatom, however, the absolute value of μ decreases with increase of [Pb2+]aq suggesting the metal adsorption on negative surface sites. These observations allowed us to construct a surface complexation model (SCM) for cadmium and lead binding by diatom surfaces that postulates the Constant Capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. In the full range of investigated Cd concentration, the SCM is able to describe the concentration of adsorbed metal as a function of [Cd2+]aq without implying the presence of high affinity, low abundance sites, that are typically used to model the metal interactions with natural multi-component organic substances. At the same time, Cd fast initial reaction requires the presence of “highly reactive sites” those concentration represents only 2.5-3% of the total amount of carboxylic sites. For reversible adsorption experiments, the dominating carboxylic groups, whose concentration is allowed to vary within the uncertainty of experimental acid-base titrations, are sufficient to reproduce the metal adsorption isotherms. Results of this study strongly suggest that laboratory experiments performed in a wide range of metal to biomass ratios, represent robust and relatively simple method for assessing the distribution of metals between aqueous solution and planktonic and periphytic biomass in natural settings.  相似文献   

14.
In anoxic environments, microbial fermentation is the first metabolic process in the path of organic matter degradation. Since little is known about carbon isotope fractionation during microbial fermentation, we studied mixed-acid fermentation of different saccharides (glucose, cellobiose, and cellulose) in Clostridium papyrosolvens. The bacterium was grown anaerobically in batch under different growth conditions, both in pure culture and in co-culture with Methanobacterium bryantii utilizing H2/CO2 or Methanospirillum hungatei utilizing both H2/CO2 and formate. Fermentation products were acetate, lactate, ethanol, formate, H2, and CO2 (and CH4 in methanogenic co-culture), with acetate becoming dominant at low H2 partial pressures. After complete conversion of the saccharides, acetate was 13C-enriched (αsacc/ac = 0.991-0.997), whereas lactate (αsacc/lac = 1.001-1.006), ethanol (αsacc/etoh = 1.007-1.013), and formate (αsacc/form = 1.007-1.011) were 13C-depleted. The total inorganic carbon produced was only slightly enriched in 13C, but was more enriched, when formate was produced in large amounts, as 12CO2 was preferentially converted with H2 to formate. During biomass formation, 12C was slightly preferred (αsacc/biom ≈ 1.002). The observations in batch culture were confirmed in glucose-limited chemostat culture at growth rates of 0.02-0.15 h−1 at both low and high hydrogen partial pressures. Our experiments showed that the carbon flow at metabolic branch points in the fermentation path governed carbon isotope fractionation to the accumulated products. During production of pyruvate, C isotopes were not fractionated when using cellulose, but were fractionated to different extents depending on growth conditions when using cellobiose or glucose. At the first catabolic branch point (pyruvate), the produced lactate was depleted in 13C, whereas the alternative product acetyl-CoA was 13C enriched. At the second branch point (acetyl-CoA), the ethanol formed was 15.6-18.6‰ depleted in 13C compared to the alternative product acetate. At low hydrogen partial pressures, as normally observed under environmental conditions, fermentation of saccharides should mainly result in the production of acetate that is only slightly enriched in 13C (<3‰).  相似文献   

15.
Soil n-alkane δD vs. altitude gradients along Mount Gongga, China   总被引:1,自引:0,他引:1  
The altitude effect on the isotopic composition of precipitation and its application to paleoelevation reconstruction using authigenic or pedogenic minerals have been intensively studied. However, there are still no studies on variations in biomarker δD along altitude transects to investigate its potential as a paleoelevation indicator, although it has been observed that δD of higher plant lipid may record changes in precipitation δD (δDp). Here, we present δD values of higher plant-derived C27, C29, and C31n-alkanes from surface soil along the eastern slope of Mount Gongga, China with great changes in physical variables and vegetation over a range from 1000 to 4000 m above sea level. The weighted-mean δD values of these n-alkanes (δDwax) show significant linear correlations with predicted δDp values (R2 = 0.76) with an apparent isotopic enrichment (εwax-p) of −137 ± 9‰, indicating that soil δDwax values track overall δDp variation along the entire altitudinal transect. Leaf δDwax is also highly correlated with mountain altitude by a significant quadratic relationship (R2 = 0.80). Evapotranspiration is found declining with altitude, potentially lowering δDwax values at higher elevations. However, this evapotranspiration effect is believed to be largely compensated by the opposing effect of vegetation changes, resulting in less varied εwax-p values over the slope transect. This study therefore confirms the potential of using leaf δDwax to infer paleoelevations, and more generally, to infer the δD of precipitation.  相似文献   

16.
The sulfur concentration at pyrrhotite- and anhydrite-saturation in primitive hydrous basaltic melt of the 2001-2002 eruption of Mt. Etna was determined at 200 MPa, T = 1050-1250 °C and at log fO2 from FMQ to FMQ+2.2 (FMQ is Fayalite-Magnetite-Quartz oxygen buffer). At 1050 °C Au sample containers were used. A double-capsule technique, using a single crystal olivine sample container closed with an olivine piston, embedded in a sealed Au80Pd20 capsule, was developed to perform experiments in S-bearing hydrous basaltic systems at T > 1050 °C. Pyrrhotite is found to be a stable phase coexisting with melt at FMQ-FMQ+0.3, whereas anhydrite is stable at FMQ+1.4-FMQ+2.2. The S concentration in the melt increases almost linearly from 0.12 ± 0.01 to 0.39 ± 0.02 wt.% S at FeS-saturation and from 0.74 ± 0.01 to 1.08 ± 0.04 wt.% S at anhydrite-saturation with T ranging from 1050-1250 °C. The relationships between S concentration at pyrrhotite and/or anhydrite saturation, MgO content of the olivine-saturated melt, T, and log fO2 observed in this study and from previous data are used to develop an empirical model for estimating the magmatic T and fO2 from the S and MgO concentrations of H2O-bearing olivine-saturated basaltic melts. The model can also be used to determine maximum S concentrations, if fO2 and MgO content of the melt are known. The application of the model to compositions of melt inclusions in olivines from Mt. Etna indicates that the most primitive magmas trapped in inclusions might have been stored at log fO2 slightly higher than FMQ+1 and at T = 1100-1150 °C, whereas more evolved melts could have been trapped at T ? 1100 °C. These values are in a good agreement with the estimates obtained by other independent methods reported in the literature.  相似文献   

17.
We determined the stable carbon and hydrogen isotope fractionation factors for methane oxidation under oxic conditions using strains with known degradation pathways. The aerobic oxidation of methane can be initiated by two different forms of enzymes known as methane monooxygenases (MMO). The expression of these enzymes is type-specific and dependent upon the adjusted copper concentration in the medium (or environment). In this study, the expression of either the soluble MMO or the particulate MMO was supported by adjusting the copper concentrations in the growth medium. Taxonomically different aerobic methanotrophic strains, mainly belonging to the alpha- and gamma- classes of Proteobacteria, produced methane isotope enrichment factors (εbulk) ranging from −14.8 to −27.9‰ for carbon, and from −110.0 to −231.5‰ for hydrogen. The ratio of hydrogen versus carbon discrimination (Λ = (αH−1 − 1)/(αC−1 − 1) ≈ Δ(δ2H)/Δ(δ13C)) were similar for all tested cultures, and are also identical to values calculated from previously published enrichment factors for aerobic and anaerobic methane degradation. In contrast, Λ-values for the abiotic oxidation of methane with OH radicals (this process is considered as the main removal process for methane from the atmosphere) were significantly higher than the values derived from biotic oxidation. Due to the low variability of microbial methane isotope fractionation patterns, we propose that combined carbon and hydrogen isotope fractionation analyses can be used to monitor and assess the occurrence of microbial methane oxidation in marine or terrestrial environments. However, it is not possible to distinguish distinct aerobic or anaerobic methane-oxidation pathways by this approach.  相似文献   

18.
Seepage of asphalt forms the basis of a cold seep system at 3000 m water depth at the Chapopote Knoll in the southern Gulf of Mexico. Anaerobic microbial communities are stimulated in the oil-impregnated sediments as evidenced by the presence of intact polar membrane lipids (IPLs) derived from archaea and Bacteria at depths up to 7 m below the seafloor. Detailed investigation of stable carbon isotope composition (δ13C) of alkyl and acyl moieties derived from a range of IPL precursors with distinct polar head groups resolved the complexity of carbon metabolisms and utilization of diverse carbon sources by uncultured microbial communities. In surface sediments most of the polar lipid-derived fatty acids with phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) head groups could be tentatively assigned to autotrophic sulfate-reducing bacteria, with a relatively small proportion involved in the anaerobic oxidation of methane. Derivatives of phosphatidyl-(N)-methylethanolamine (PME) were abundant and could be predominantly assigned to heterotrophic oil-degrading bacteria. Archaeal IPLs with phosphate-based hydroxyarchaeols and diglycosidic glyceroldibiphytanylglyceroltetraethers (GDGTs) were assigned to methanotrophic archaea of the ANME-2 and ANME-1 cluster, respectively, whereas δ13C values of phosphate-based archaeols and mixed phosphate-based and diglycosidic GDGTs point to methanogenic archaea. At a 7 m deep sulfate-methane transition zone that is linked to the upward movement of gas-laden petroleum, a distinct increase in abundance of archaeal IPLs such as phosphate-based hydroxyarchaeols and diglycosidic archaeol and GDGTs is observed; their δ13C values are consistent with their origin from both methanotrophic and methanogenic archaea. This study reveals previously hidden, highly complex patterns in the carbon-flow of versatile microbial communities involved in the degradation of heavy oil including hydrocarbon gases that would not have been evident from classical compound-specific isotope analyses of either bulk IPL or apolar lipid derivatives.  相似文献   

19.
A high-resolution pollen record covering the last 40,000 yr (BIW95-4) from Lake Biwa, western Japan, shows regional vegetation responses to millennial-scale climate changes. From 40 to 30 ka, Cryptomeria japonica was dominant around the lake among pinaceous conifers and deciduous broad-leaved trees. During this period, fluctuations of C.japonica are correlated with Dansgaard-Oeschger (D-O) cycles recognized from the anhysteretic remanent magnetization (ARM) record. Increases in the abundance of this taxon may have been caused by wetter summer conditions influenced by the East Asian monsoon or increased snowfall on the Sea of Japan side of the Japanese archipelago. Between 29 and 14 ka, pinaceous conifer forests mainly composed of Pinus subgenus Haploxylon, Tsuga, and Picea trees developed. At approximately 23 ka, Picea trees increased in abundance as ARM values decreased. This expansion of Picea trees has been correlated with Heinrich event (HE) 2 in the North Atlantic. At about 14 ka, the distribution of broad-leaved forest (mainly composed of deciduous oaks) began to expand after D-O 1. Evidence of significant vegetation change related to the abrupt Younger Dryas cooling event has not been found.  相似文献   

20.
We assessed the performance of a transfer function model for sea-level studies using salt-marsh foraminifera from two estuaries of northern Portugal. An independent data set of 12 samples and 13 sub-fossil samples from a core were used to evaluate if reconstructions and errors derived from current models are adequate. Initial transfer function models provided very strong results as indicated by cross-validation (component 2; r2 = 0.80-0.82; RMSEP ranged from 10.7 to 12.3 cm) and improved its performance by ca. 10% when sample size reached ca. 50. Results derived using an independent test data set indicate that cross-validation is a very effective approach and produces conservative errors when compared to observed errors. We additionally explored the possible effect of transforming the concentration data into percent in the error estimations by comparing the results obtained based on the use of both concentration and compositional data. Results indicate that this type of transformation does not affect the performance of the transfer function. Results derived from a reconstruction of sub-fossil samples from a core indicate that high-resolution sea-level reconstructions are possible, but show that depositional environments have to be selected carefully in order to minimize the impact of possible taphonomical loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号