首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The right-lateral strike-slip El Pilar Fault is one of the major structures that accommodate the relative displacement between the Caribbean and South-America Plates. This fault, which trends East–West along the northeastern Venezuela margin, is a seismogenic source, and shows numerous evidence for active tectonics, including deformation of the Quaternary sediments filling the Cariaco Gulf. Because the main El Pilar Fault strand belongs to a set of strike-slip faults and thrusts between the stable Guyana shield (South) and the Caribbean oceanic floor (North), a GPS network was designed and installed to measure the relative motion of the El Pilar Fault and other faults. The results obtained from the comparison of 2003 and 2005 surveys indicate: (i) a lack of significant displacement (especially shortening) in the Serrania del Interior (Neogene cordillera overthrusted above the Guyana craton), (ii) an eastward displacement (relative to fixed south America plate) up to 22 mm/year of benchmarks located north of the El Pilar Fault.  相似文献   

2.
In light of the July 9, 1997, Cariaco earthquake, it is clearly understood now that damage in the city of Cumaná – located in northeastern Venezuela and frequently destroyed by the largest earthquakes since the first recorded event in 1530 – is strongly enhanced by poor soil conditions that, in turn, are responsible for site amplification and widespread earthquake-induced effects. Therefore, most previous macroseismic studies of historical earthquakes must be revaluated because those localized high-intensity values at Cumaná surely led to the misestimation of past epicenters. Preliminary paleoseismic results, gathered at three exploratory trenches dug across the surface break of the Cariaco 1997 earthquake in 1998, allow us to associate the 1684 earthquake with this recently ruptured fault segment that extends between the towns of San Antonio del Golfo and Río Casanay (roughly between the two gulfs of Cariaco and Paria, state of Sucre). Other major results from the reassessment of the seismic history of this fault are: (a) the 1766 event seems to have generated in a different source to the El Pilar fault because the size of the felt area suggests that it is an intermediate-depth earthquake; (b) damage to Cumaná produced by the 1797 event suggests that this was a local earthquake, perhaps equivalent to the 1929 earthquake, which ruptured for some 30 km just east of Cumaná into the Gulf of Cariaco; and (c) seismogenic association of the 1530 and 1853 earthquakes still remains unclear but it is very likely that these ruptures occurred offshore, as suggested by the rather large tsunami waves that both events have generated, placing their hypocenters west of Cumaná in the Cariaco Trough. This reassessment also sheds light into the El Pilar fault segmentation and the behavior of its seismogenic barriers through time.  相似文献   

3.
Broadband P and S waves source spectra of 12 MS5.0 earthquakes of the 1997 Jiashi, Xinjiang, China, earthquake swarm recorded at 13 GDSN stations have been analyzed. Rupture size and static stress drop of these earthquakes have been estimated through measuring the corner frequency of the source spectra. Direction of rupture propagation of the earthquake faulting has also been inferred from the azimuthal variation of the corner frequency. The main results are as follows: ①The rupture size of MS6.0 strong earthquakes is in the range of 10~20 km, while that of MS=5.0~5.5 earthquakes is 6~10 km.② The static stress drop of the swarm earthquakes is rather low, being of the order of 0.1 MPa. This implies that the deformation release rate in the source region may be low. ③ Stress drop of the earthquakes appears to be proportional to their seismic moment, and also to be dependent on their focal mechanism. The stress drop of normal faulting earthquakes is usually lower than that of strike-slip type earthquakes. ④ For each MS6.0 earthquake there exists an apparent azimuthal variation of the corner frequencies. Azimuthally variation pattern of corner frequencies of different earthquakes shows that the source rupture pattern of the Jiashi earthquake swarm is complex and no uniform rupture expanding direction exists.  相似文献   

4.
Source mechanism and source parameters of May 28, 1998 earthquake,Egypt   总被引:1,自引:0,他引:1  
On May 28, 1998, a moderate size earthquake of mb 5.5 occurred offshore the northwestern part of Egypt (latitude 31.45°N and longitude 27.64°E). It was widely felt in the northern part of Egypt. Being the largest well-recorded event in the area for which seismic data from the global digital network are available, it provides an excellent opportunity to study the tectonic process and present day stress field occurring along the offshore Egyptian coast. The source parameters of this event are determined using three different techniques: modeling of surface wave spectral amplitudes, regional waveform inversion, and teleseismic body waveform inversion. The results show a high-angle reverse fault mechanism generally trending NNW–SSE. The P-axis trends ENE–WSW consistently with the prevailed compression stress along the southeastern Hellenic arc and southwestern part of the Cyprean arc. This unexpected mechanism is most probably related to a positive inversion of the NW trending offshore normal faults and confirms an extension of the back thrusting effects towards the African margin. The estimated focal depth ranges from 22 to 25 km, indicating a lower crustal origin earthquake owing to deep-seated tectonics. The source time function indicates a single source with rise time and total rupture duration of 2 and 5 s, respectively. The seismic moment (M o) and the moment magnitude (M w) determined by the three techniques are 1.03 × 1017 Nm, 5.28; 1.24 × 1017 Nm, 5.33; and 1.68 × 1017 Nm, 5.42; respectively. The calculated fault radius, stress drop, and the average dislocation assuming a circular fault model are 7.2 km, 0.63 Mpa, and 0.11 m, respectively.  相似文献   

5.
Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811–1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru (M w = 8.4, June 23, 2001); Denali, AK, USA (M w = 7.8; November 3, 2002); Zemmouri–Boumerdes, Algeria (M w = 6.8, May 21, 2003); and Sumatra, Indonesia (M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.  相似文献   

6.
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of − 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = − 0.4, when compared to the regional networks operating in West Bohemia (M c > 0.0). In the course of this work, the main temporal features (frequency–magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg–Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.  相似文献   

7.
We analyze the strong motion accelerograms of the moderate (M w = 6.1), March 31, 2006, Darb-e-Astane earthquake of western Iran and also those of one of its prominently recorded, large (M w = 5.1) foreshock and (M w = 4.9) aftershock. (1) Using derived SH-wave spectral data, we first objectively estimate the parameters W o\mathit{\Omega} _{\rm o} (long period spectral level), f c (corner frequency) and Q(f) (frequency dependent, average shear wave quality factor), appropriate for the best-fit Brune ω  − 2 spectrum of each of these three events. We then perform a non-linear least square analysis of the SH-wave spectral data to provide approximate near-field estimates of the strike, dip, and rake of the causative faults and also the seismic moment, moment magnitude, source size, and average stress drop of these three events. (2) In the next step, we use these approximate values and an empirical Green’s function approach, in an iterative manner, to optimally model the strong ground motion and rupture characteristics of the main event in terms of peak ground acceleration/velocity/displacement and duration of ground shaking and thereby provide improved, more reliable estimates of the causative fault parameters of the main event and its asperities. Our near-field estimates for both the main moderate event and the two smaller events are in good conformity with the corresponding far-field estimates reported by other studies.  相似文献   

8.
A swarm of earthquakes of magnitudes up to M L = 3.8 stroke the region of West Bohemia/Vogtland (border area between Czechia and Germany) in October 2008. It occurred in the Novy Kostel focal zone, where also all recent earthquake swarms (1985/1986, 1997, and 2000) took place, and was striking by a fast sequence of macroseismically observed earthquakes. We present the basic characteristics of this swarm based on the observations of a local network WEBNET (West Bohemia seismic network), which has been operated in the epicentral area, on the Czech territory. The swarm was recorded by 13 to 23 permanent and mobile WEBNET stations surrounding the swarm epicenters. In addition, a part of the swarm was also recorded by strong-motion accelerometers, which represent the first true accelerograms of the swarm earthquakes in the region. The peak ground acceleration reached 0.65 m/s2. A comparison with previous earthquake swarms indicates that the total seismic moments released during the 1985/1986 and 2008 swarms are similar, of about 4E16 Nm, and that they represent the two largest swarms that occurred in the West Bohemia/ Vogtland region since the M L = 5.0 swarm of 1908. Characteristic features of the 2008 swarm are its short duration (4 weeks) and rapidity and, consequently, the fastest seismic moment release compared to previous swarms. Up to 25,000 events in the magnitude range of 0.5 < M L < 3.8 were detected using an automatic picker. A total of nine swarm phases can be distinguished in the swarm, five of them exceeding the magnitude level of 2.5. The magnitude–frequency distribution of the complete 2008 swarm activity shows a b value close to 1. The swarm hypocenters fall precisely on the same fault portion of the Novy Kostel focal zone that was activated by the 2000 swarm (M L ≤ 3.2) in a depth interval from 6 to 11 km and also by the 1985/1986 swarm (M L ≤ 4.6). The steeply dipping fault planes of the 2000 and 2008 swarms seem to be identical considering the location error of about 100 m. Furthermore, focal mechanisms of the 2008 swarm are identical with those of the 2000 swarm, both matching an average strike of 170° and dip of 80° of the activated fault segment. An overall upward migration of activity is observed with first events at the bottom and last events at the top of the of the activated fault patch. Similarities in the activated fault area and in the seismic moments released during the three largest recent swarms enable to estimate the seismic potential of the focal zone. If the whole segment of the fault plane was activated simultaneously, it would represent an earthquake of M L ~5. This is in good agreement with the estimates of the maximum magnitudes of earthquakes that occurred in the West Bohemia/Vogtland region in the past.  相似文献   

9.
杨萍  张辉  冯建刚 《地震工程学报》2017,39(1):150-153,185
采用CAP(Cut and Paste)方法反演了2015年11月23日青海祁连MS5.2主震的震源机制解,其最佳双力偶解:节面Ⅰ走向109°、倾角58°、滑动角21°,节面Ⅱ走向8°、倾角72°、滑动角146°,矩震级MW5.16,矩心震源深度约为9 km。结合震区的活动构造,判定发震断层面为节面Ⅰ,推测托勒山北缘活动断裂中段为此次地震的发震断裂。  相似文献   

10.
IntroductionEarthquakelocationisoneoftheoldestinverseproblemsinseismology.Preciseearthquakelocationisthebasisoftheseismicresearch.Theprecisionoftheearthquakelocationdependsonmanyfactors,suchasthequalityofthestationnetwork,theprecisionoftheseismicwavearrivaltimemeasured,andtheknowledgeaboutthecrustalvelocitystructureandsoon.AccordingtotheresearchmadebyZhao(1983),thehorizontallocationerroroftheeanhquakelocatedbythetraditionalabsolutemethodinthecentralareaofNorthChinaisabouttZkin,intheedgeregio…  相似文献   

11.
利用2010~2016年阳江地区小震资料,对围绕广东阳江6.4级地震发震构造的NEE走向平冈断层的西南段及NW走向的程村断层展布的密集地震,经双差定位方法重新进行震源位置的修定,获得了1411个精定位震源资料。依据成丛地震发生在断层附近的原则,采用模拟退火算法及高斯-牛顿算法相结合的方式,较精确地获得了2个断层面的详细参数:即平冈断层西南段走向258°、倾角85°、倾向NW,与6.4级地震的震源机制解结果十分一致,断层长度约15km并穿过了其西南端海域抵达了对岸;程村断层走向331°、倾角88°、倾向NE,长度约28km,较已有结果更长、走向也朝NE向偏转了约15°。2条陡直断层近乎垂直相交于近海,在构造应力作用下均以走滑错动为主。  相似文献   

12.
On July 20, 1995, an earthquake of M L=4.1 occurred in Huailai basin, northwest of Beijing, with epicenter coordinates 40.326°N, 115.448°E and focal depth 5.5 km. Following the main shock, seismicity sharply increased in the basin. This earthquake sequence was recorded by Sino-European Cooperative Huailai Digital Seismograph Network (HDSN) and the hypocentres were precisely located. About 2 hours after the occurrence of the main shock, a smaller event of M L=2.0 took place at 40.323°N, 115.447°E with a focal depth of 5.0 km, which is very close to the main shock. Using the M L=2.0 earthquake as an empirical Green’s function, a regularization method was applied to retrieve the far-field source-time function (STF) of the main shock. Considering the records of HDSN are the type of velocity, to depress high frequency noise, we removed instrument response from the records of the two events, then integrated them to get displacement seismogram before applying the regularization method. From the 5 field stations, P phases in vertical direction which mostly are about 0.5 s in length were used. The STFs obtained from each seismic phases are in good agreement, showing that the M L=4.1 earthquake consisted of two events. STFs from each station demonstrate an obvious “seismic Doppler effect”. Assuming the nodal plane striking 37° and dipping 40°, determined by using P wave first motion data and aftershock distribution, is the fault plane, through a trial and error method, the following results were drawn: Both of the events lasted about 0.1 s, the rupture length of the first one is 0.5 km, longer than the second one which is 0.3 km, and the rupture velocity of the first event is 5.0 km/s, larger than that of the second one which is about 3.0 km/s; the second event took place 0.06 s later than the first one; on the fault plane, the first event ruptured in the direction γ=140° measured clockwise from the strike of the fault, while the second event ruptured at γ=80°, the initial point of the second one locates at γ=−100° and 0.52 km from the beginning point of the first one. Using far-field ground displacement spectrum measurement method, the following source parameters about the M L=4.1 earthquake were also reached: the scalar earthquake moment is 3.3×1013 N·m, stress drop 4.6 MPa, rupture radius 0.16 km. Contribution No. 99FE2022, Institute of Geophysics, China Seismological Bureau. This study is supported by the Chinese Joint Seismological Science Foundation (95-07-411).  相似文献   

13.
A sequence of earthquakes took place in June 2004 approximately 60 km southeast of Tabuk, Saudi Arabia. The first felt event (M W = 3.9) occurred on June 9 and caused minor damage in the epicentral area according to the National Earthquake Information Center and the local reports. Another moderate size event occurred on June 22 (M W = 5.1) and was followed by a few felt aftershocks without any reported damage. This earthquake sequence caused considerable alarm at Tabuk and highlights the fact that damaging earthquakes can occur in this region away from the major plate boundary in the Red Sea. Being the largest well-recorded event in the area for which the digital and broadband records from Saudi Arabia, Egypt, Israel, Jordan, Turkey, Cyprus, and Kuwait are available, it provides an excellent opportunity to study the tectonic process and present day stress field acting on this area. The digital records from these regional networks were used to relocate the largest three events of this sequence. Focal mechanisms were obtained from full waveform inversion and indicate normal faulting mechanisms with two nodal planes oriented NW–SE in parallel to the faults bounding the Tabuk graben and the Red Sea rift axis. These events originated at shallow focal depths of 4–5 km, possibly contributing to the widely felt ground motions. These events offer a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in northwestern Saudi Arabia, the Gulf of Aqaba, and eastern Egypt.  相似文献   

14.
The method of relative seismic moment tensor determination proposed byStrelitz (1980) is extended a) from an interactive time domain analysis to an automated frequency domain procedure, and b) from an analysis of subevents of complex deep-focus earthquakes to the study of individual source mechanism of small events recorded at few stations.The method was applied to the recovery of seismic moment tensor components of 95 intermediate depth earthquakes withM L=2.6–4.9 from the Vrancea region, Romania. The main feature of the obtained fault plane solutions is the horizontality ofP axes and the nonhorizontal orienaation ofT axes (inverse faulting). Those events with high fracture energy per unit area of the fault can be grouped unambiguously into three depth intervals: 102–106 km, 124–135 km and 141–152 km. Moreover, their fault plane solutions are similar to ones of all strong and most moderate events from this region and the last two damaging earthquakes (November 10, 1940 withM W=7.8 and March 4 1977 withM W=7.5) occurred within the third and first depth interval, respectively. This suggests a possible correlation at these depths between fresh fracture of rocks and the occurrence of strong earthquakes.  相似文献   

15.
IntroductionThenortheasternregionofQinghai-Xizangplateauisthejunctionregionofthethreeblocks,ie.,Qinghai-Xizang,AIxaandordosblock.TianandDing(l998)studiedtheclockwisetypequasi-trijunctionaroundHaiyuan-YinchuaninnortheasternregionofQinghai-Xizangplateau.Thethreet6ctonicbranchesofthequasi4rjunctionareQiIianshanfaultzone,Yinchuan-Jedai-Linhe(YJL)fractureddepressionbasinandLiupanshanfaultzone.TheQilianshanfaultzoneshowssin-istraIandcompressionalmovement,themovementofYJLbasinisofdextraland…  相似文献   

16.
We determine the rupture velocity, rupture area, stress drop and duration of four strong deep-focus earthquakes in the Philippines by back-projecting the teleseismic P waves. Four deep-focus earthquakes occurred in a totally consumed Molucca microplate; their focal depths were greater than 550 km and their moment magnitudes were between M w 6.6 and M w 7.6. By studying this deep-focus cluster, we are able to estimate the rupture velocity, rupture area and stress drop which would assist in constraining the physical mechanism for earthquakes deeper than 500 km. Since the Molucca microplate is totally consumed, little evidence is left on the surface for us to do research. This deep-focus cluster provides us the opportunity to reveal the properties of this totally consumed microplate by using seismic method for the first time. Four earthquakes in this deep-focus cluster all have multiple rupture subevents. The M w 7.3 event ruptures in two subevents, the M w 7.6 and M w 7.4 events both have three subevents. The M w 6.6 event has single peak on the amplitude as a function of time; however, its energy releases at two spatially separated areas. Our results show that this deep-focus cluster has a slow rupture velocity which is about 0.27 to 0.43 of the shear wave velocity, long-scaled duration, concentrated energy release area, and high stress drop. These source properties are similar to those of other deep earthquakes occurring in warm slabs and indicate that the totally consumed Molucca microplate possibly is a warm plate.  相似文献   

17.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

18.
We develop new approaches to calculating 30-year probabilities for occurrence of moderate-to-large earthquakes in Italy. Geodetic techniques and finite-element modelling, aimed to reproduce a large amount of neotectonic data using thin-shell finite element, are used to separately calculate the expected seismicity rates inside seismogenic areas (polygons containing mapped faults and/or suspected or modelled faults). Thirty-year earthquake probabilities obtained from the two approaches show similarities in most of Italy: the largest probabilities are found in the southern Apennines, where they reach values between 10% and 20% for earthquakes of M W ≥ 6.0, and lower than 10% for events with an M W ≥ 6.5.  相似文献   

19.
采用双差定位法对山东莱州地震序列重新定位,通过CAP方法反演M4.6地震震源机制,在此基础上初步探讨莱州地震序列发震构造。结果显示:精确定位震中位置主要位于柞村—仙夼断裂的NW方向,深度剖面显示从SE方向到NW方向断层深度呈由浅逐渐变深的趋势,这均与柞村—仙夼断裂位置、走向、倾向特征较为吻合;M4.6地震震源机制解的节面Ⅰ与柞村—仙夼断裂走向、倾角较为接近。综合精确定位震中位置、剖面深度分布特征、M4.6地震震源机制解及宏观调查烈度分布等结果与柞村-仙夼断裂产状之间的关系,初步推测柞村—仙夼断裂可能为莱州地震序列的发震断层。  相似文献   

20.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号