首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   

2.
Bacterial sulfate reduction in marine sediments generally occurs in the presence of high millimolar concentrations of sulfate. Published data indicate that low sulfate concentrations may limit sulfate reduction rates below 0.2-2 mM. Yet, high sulfate reduction rates occur in the 1-100 μM range in freshwater sediments and at the sulfate-methane transition in marine sediments. Through a combination of 35S-tracer experiments, including initial velocity experiments and time course experiments, we searched for different sulfate affinities in the mixed community of sulfate reducers in a marine sediment. We supported the radiotracer experiments with a highly sensitive ion chromatographic technique for sulfate with a detection limit of 0.15 μM SO42− in marine pore water. Our results showed that high and low affinities for sulfate co-occur and that the applied experimental approach may determine the observed apparent half saturation constant, Km. Our experimental and model data both show that sulfate reduction in the studied marine sediment could be explained by two dominating affinities for sulfate: a low affinity with a mean half saturation constant, Km, of 430 μM SO42− and a high affinity with a mean Km of 2.6 μM SO42−. The high-affinity sulfate reduction was thermodynamically un-constrained down to <1 μM SO42−, both in our experiments and under in situ conditions. The reduction of radio-labeled sulfate was partly reversible due to concurrent re-oxidation of sulfide by Fe(III) and possibly due to a reversibility of the enzymatic pathway of sulfate reduction. A literature survey of apparent Km values for sediments and pure cultures is presented and discussed.  相似文献   

3.
The study addresses a 10 m deep phreatic postglacial sandy aquifer of vertically varying lithology and horizontally varying infiltration water chemistry, displaying calcite dissolution, ion-exchange, and anaerobic redox processes. The simple variations in lithology and infiltration combine into a complex groundwater chemistry, showing ongoing Fe-oxide reduction, sulfate reduction and methanogenesis. Rates of sulfate reduction, methanogenesis and methane oxidation were measured directly using radiotracers. Maximum rates were 1.5 mM/yr for sulfate reduction, 0.3 mM/yr for methanogenesis, and only 4.5 μM/yr for methane oxidation. The overlap of sulfate reduction and methanogenesis was very small. The important intermediates formed during the degradation of the organic matter in the sediment, formate and acetate, had concentrations around 2 μM in the sulfate reducing zone, increasing to 10 and 25 μM in the methanogenic part. The concentration of H2 was around 0.25 nM in the Fe-reducing zone, 0.4 nM in the sulfate reducing zone, and increased to 6 nM in the methanogenic zone. Using in situ concentrations of products and reactants the available energies for a range of different reactions could be calculated. The results of the calculations are in accordance with the observed distribution of the ongoing redox processes, implying that the system is well described using a partial equilibrium approach. A 2D numerical PHAST model of the system based on the partial equilibrium approach, extended by implementing specific energy yields for the microbial redox processes, could explain most of the observed groundwater geochemistry as an expression of a closely coupled system of mineral equilibria and redox processes occurring at partial equilibrium.  相似文献   

4.
Rates of sea level rise associated with climate change are predicted to increase in the future, potentially altering ecosystems at all ecological levels. Sea level rise can increase the extent of brackish water intrusion into freshwater ecosystems, which in turn can affect the structure and function of resident microbial communities. In this study, we performed a year-long mesocosm experiment using intact tidal freshwater marsh sediment cores to examine the effect of a 5-part per thousand (ppt) salinity increase on the diversity and community composition of sulfate-reducing prokaryotes. We used a clone library approach to examine the dsrA gene, which encodes an important catalytic enzyme in sulfate reduction. Our results indicate that tidal freshwater marshes contain extremely diverse communities of sulfate-reducing bacteria. Members of these communities were, on average, only 71 % similar to known cultured sulfate reducers and 81 % similar to previously sequenced environmental clones. Salinity and associated increases in sulfate availability did not significantly affect the diversity or community composition of sulfate-reducing prokaryotes. However, carbon quality and quantity, which correlated with depth, were found to be the strongest drivers of sulfate-reducing community structure. Our study demonstrates that the sulfate-reducing community in tidal freshwater marsh sediments appears resistant to increased salinity in the face of sea level rise. Additionally, the microorganisms that comprise this sulfate-reducing community appear to be unique to tidal freshwater marsh sediments and may represent novel lineages of previously undescribed sulfate reducers.  相似文献   

5.
The organic rich sediments of the Skagerrak contain high quantities of shallow gas of mostly biogenic origin that is transported to the sediment surface by diffusion. The sulfate methane transition zone (SMTZ), where anaerobic oxidation of methane (AOM) and sulfate reduction occur, functions as a methane barrier for this upward diffusing methane.To investigate the regulation of AOM and sulfate reduction rates (SRR) and the controls on the efficiency of methane consumption, pore water concentrations, and microbial rates of AOM, sulfate reduction and methanogenesis were determined in three gravity cores collected along the slope of the Norwegian Trench in the Skagerrak. SRR occurred in two distinct peaks, at the sediment surface and the SMTZ, the latter often exceeding the peak AOM rates that occurred at the bottom of the SMTZ. Highest rates of both AOM and SRR were observed in a core from a pockmark, where advective methane transport occurred, generating high methane and sulfate fluxes. But even at this site with a shallow SMTZ, the entire flux of methane was oxidized below the sediment surface. AOM, SRR and methanogenesis seem to be closely associated and strongly regulated by sulfate concentrations, which were, in turn, regulated by the methane flux. Rate measurements of SRR, AOM and methanogenesis revealed a tight coupling of these processes. Bicarbonate-based methanogenesis occurred at moderate sulfate concentrations (>5 mM) above the AOM zone but seemed to be inhibited in the depth where AOM occurred. The unbalanced stoichiometry of AOM and SRR in the SMTZ was more pronounced in rate measurements than in methane and sulfate fluxes, and seemed more likely be related to enhanced SRR in this zone than an underestimation of methane fluxes.  相似文献   

6.
Methanogen ether lipids have been quantified in sediments from a Florida swamp and the Atlantic ocean. Swamp cores containing acyclic and monocyclic isopranyl ethers are clearly differentiated from deep sea sediments which also contain bicyclic compounds. A concentration maximum near the bottom of the sulfate reducing zone in deep sea sediments may reflect a biogeochemical system in which methanogenesis and sulfate reduction are coupled by the process of methane oxidation. Lipid diagenesis is evident in the deep sea sediments. Species zonation, possibly caused by oxygen sensitivity, is detected in the relative lipid abundances in swamp sediments.  相似文献   

7.
At the Chapopote Knoll in the Southern Gulf of Mexico, deposits of asphalt provide the substrate for a prolific cold seep ecosystem extensively colonized by chemosynthetic communities. This study investigates microbial life and associated biological processes within the asphalts and surrounding oil-impregnated sediments by analysis of intact polar membrane lipids (IPLs), petroleum hydrocarbons and stable carbon isotopic compositions (δ13C) of hydrocarbon gases. Asphalt samples are lightly to heavily biodegraded suggesting that petroleum-derived hydrocarbons serve as substrates for the chemosynthetic communities. Accordingly, detection of bacterial diester and diether phospholipids in asphalt samples containing finely dispersed gas hydrate suggests the presence of hydrocarbon-degrading bacteria. Biological methanogenesis contributes a substantial fraction to the methane captured as hydrate in the shallow asphalt deposits evidenced by significant depletion in 13C relative to background thermogenic methane. In sediments, petroleum migrating from the subsurface stimulates both methanogenesis and methanotrophy at a sulfate-methane transition zone 6-7 m below the seafloor. In this zone, microbial IPLs are dominated by archaeal phosphohydroxyarchaeols and archaeal diglycosidic diethers and tetraethers. Bacterial IPLs dominate surface sediments that are impregnated by severely biodegraded oil. In the sulfate-reduction zone, diagnostic IPLs indicate that sulfate-reducing bacteria (SRB) play an important role in petroleum degradation. A diverse mixture of phosphohydroxyarchaeols and mixed phospho- and diglycosidic archaeal tetraethers in shallow oil-impregnated sediments point to the presence of anaerobic methane-oxidizing ANME-2 and ANME-1 archaea, respectively, or methanogens. Archaeal IPLs increase in relative abundance with increasing sediment depth and decreasing sulfate concentrations, accompanied by a shift of archaeol-based to tetraether-based archaeal IPLs. The latter shift is suggested to be indicative of a community shift from ANME-2 and/or methanogenic archaea in shallower sediments to ANME-1/methanogenic archaea and possibly benthic archaea in deeper sediments.  相似文献   

8.
Rice fields are an important source for the greenhouse gas methane produced by acetoclastic and hydrogenotrophic methanogenesis. Fractionation of 13C/12C can in principle be used to quantify the relative contribution of these pathways, but our knowledge of isotopic fractionation during reduction of CO2 and turnover of acetate in different methanogenic environments is still scarce. We therefore measured δ13C signatures in two types of anoxic Italian rice field soils, one with high and one with low degradable organic matter (OM) content. Both soils were incubated in the presence and absence of methyl fluoride, a specific inhibitor of acetoclastic methanogenesis. Optimization of methyl fluoride concentration resulted in complete inhibition of acetoclastic methanogenesis. CH4 was then exclusively produced by hydrogenotrophic methanogenesis, allowing determination of the isotopic signatures and fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and was used for determination of the isotopic signature of the fermentatively produced acetate (both total acetate and methyl carbon of acetate). Hence, all isotopic signatures, including fractionation factors were determined for the methanogenic soil. These data, were then used for computation of the relative contribution of the two methanogenic pathways. In the high OM soil, the contribution of acetoclastic methanogenesis to total CH4 production increased simultaneously with decreasing acetate concentration. In the low OM soil, methanogenesis from H2/CO2 was clearly greater than theoretically expected. Furthermore, isotope fractionation of hydrogenotrophic methanogenesis indicated that the in situ energy status of methanogens strongly depended on the availability of organic carbon in the rice field soil system. Collectively, our data show that the study of isotopic fractionation in methanogenic environments allows a deeper insight into the ongoing processes, which may be quite different in the same ecosystem with different content of degradable OM.  相似文献   

9.
In situ Gibbs energies of reaction (ΔG) for acetate-oxidizing sulfate reduction, acetate-oxidizing iron reduction, and acetoclastic methanogenesis, and sulfate-reducing methanotrophy are consistently negative and relatively constant throughout most of the sediment column at the eastern equatorial Pacific Ocean Drilling Program (ODP) Site 1226. The energy yields (−ΔG) closely match the values (for acetate-oxidizing sulfate reduction and acetoclastic methanogenesis) in published culturing experiments with actively growing cells and, for sulfate-reducing methanotrophy, in other environments.Although microbes mediating these reactions compete for substrates, mutualistic interactions between them appear to sustain their co-existence in deep subseafloor sediments for millions of years (the interval over which the sediments have been deposited). These competing and mutualistic interactions collectively constitute a highly coupled reaction network where relative rates of reaction are regulated by the in situ Gibbs energies of reaction.  相似文献   

10.
Solid phase and pore water chemical data collected in a sediment of the Haringvliet Lake are interpreted using a multi-component reactive transport model. This freshwater lake, which was formed as the result of a river impoundment along the southwestern coast of the Netherlands, is currently targeted for restoration of estuarine conditions. The model is used to assess the present-day biogeochemical dynamics in the sediment, and to forecast possible changes in organic carbon mineralization pathways and associated redox reactions upon salinization of the bottom waters. Model results indicate that oxic degradation (55%), denitrification (21%), and sulfate reduction (17%) are currently the main organic carbon degradation pathways in the upper 30 cm of sediment. Unlike in many other freshwater sediments, methanogenesis is a relatively minor carbon mineralization pathway (5%), because of significant supply of soluble electron acceptors from the well-mixed bottom waters. Although ascorbate-reducible Fe(III) mineral phases are present throughout the upper 30 cm of sediment, the contribution of dissimilatory iron reduction to overall sediment metabolism is negligible. Sensitivity analyses show that bioirrigation and bioturbation are important processes controlling the distribution of organic carbon degradation over the different pathways. Model simulations indicate that sulfate reduction would rapidly suppress methanogenesis upon seawater intrusion in the Haringvliet, and could lead to significant changes in the sediment’s solid-state iron speciation. The changes in Fe speciation would take place on time-scales of 20-100 years.  相似文献   

11.
A transport-reaction model was designed to identify the combination and importance of biogeochemical processes operating in four sites drilled during ODP Leg 207 (Demerara Rise, Equatorial Atlantic). Almost 100 Ma after their deposition, deeply buried Cretaceous black shales still act as active bioreactors in great sediment depths and control the biogeochemical reaction network of the whole sediment column. According to a model calibrated at the four drill sites through inverse modeling techniques, methanogenesis could be identified as a key process that dominates not only organic matter degradation but also sulfate availability through the anaerobic oxidation of methane above the black shales. A complete depletion of sulfate within the black shale sequences promotes the remobilization of biogenic barium that reprecipitates as authigenic barite at the top of the sulfate depletion zone. Temporal dynamics of degradation processes caused continuous shifts of the barite precipitation zone during burial, thus inhibiting the formation of an authigenic barite front or causing the dissolution of earlier formed fronts. Major deviations of pore water sulfate profiles from a linear gradient coincide with depths of decelerated or accelerated transport caused by local porosity minima or maxima. Model-determined reaction rates are by far lower than those found in shallower sediments due to the low metabolic activities that are characteristic for the Deep Biosphere. But even after almost 100 Ma, changing organic matter quality still influences the degradation within the black shale sequences, as it is indicated by model results.  相似文献   

12.
A series of seasonal cores was taken in a high marsh near the terminus of Delaware Bay, U.S.A. A seasonal harmonic diffusion model was successfully fit to the concentration profiles of chloride ion in the salt marsh pore waters yielding a calculated sedimentary diffusion coefficient.Virtually all other chemical reactions within salt marsh sediments are directly linked to the rate and stoichiometry of organic decomposition. The rich organic input from the grass Spartina alterniflora is oxidized anaerobically through the process of sulfate reduction. Over 90% of this net decomposition of organic matter takes place in the uppermost 20 cm. The model for sulfate reduction proposed yields an internally consistent set of both pore water (HCO?3, NH+4, HPO2?4, HS?, SO2?4) and solid phase (FeS2) distribution profiles for these sediments. Steady state assumptions and the use of mean annual constants can be employed to model the net rates of diagenetic processes in salt marshes. The pore water concentrations of sulfate ion as well as those ions released by sulfate reduction (HCO?3, NH+4, HPO2?4, HS?) are modeled by a system composed of an upper zone, where extensive reconsumption of these metabolite ions occurs, and a lower zone where steady state production and no ion reconsumption occurs.A major product of the sulfate reduction is pyrite, whose accumulation rate is greatest between 7 and 9 cm depth, where it equals the net rate of sulfate reduction. Above this zone little pyrite accumulates due to extensive reoxidation. Below 9 cm the rate of pyritization is controlled by the rate of sulfidation of a refractory iron phase.  相似文献   

13.
The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore water profiles for dissolved sulfide and sulfate,35S-sulfate reduction rates, as well as bacterial counts of large sulfur bacteria from 20 stations across the continental shelf and slope. The stations covered two transects and included the inner shelf with its anoxic and extremely oxygen-depleted bottom waters, the oxygen minimum zone on the continental slope, and the lower continental slope below the oxygen minimum zone. High concentrations of dissolved sulfide, up to 22 mM, in the near-surface sediments of the inner shelf result from extremely high rates of bacterial sulfate reduction and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate-storing sulfur bacteria, Thiomargarita spp. The filamentous relatives Beggiatoa spp. occupy low-O2 bottom waters on the outer shelf. Sulfide oxidation on the slope is apparently not mediated by the large sulfur bacteria. The data demonstrate the importance of large sulfur bacteria, which live close to the sediment-water interface and reduce the hydrogen sulfide flux to the water column. Modeling of pore water sulfide concentration profiles indicates that sulfide produced by bacterial sulfate reduction in the uppermost 16 cm of sediment is sufficient to account for the total flux of hydrogen sulfide to the water column. However, the total pool of hydrogen sulfide in the water column is too large to be explained by steady state diffusion across the sediment-water interface. Episodic advection of hydrogen sulfide, possibly triggered by methane eruptions, may contribute to hydrogen sulfide in the water column.  相似文献   

14.
We used fine-scale porewater profiles and rate measurements together with a multiple component transport–reaction model to investigate carbon degradation pathways and the coupling between electron and proton transfer reactions in Lake Champlain sediments. We measured porewater profiles of O2, Mn2+, Fe2+, HS, pH and pCO2 at mm resolution by microelectrodes, and profiles of NO3 , SO4 2−, NH4 +, total inorganic carbon (DIC) and total alkalinity (TA) at cm resolution using standard wet chemical techniques. In addition, sediment–water fluxes of oxygen, DIC, nitrate, ammonium and N2 were measured. Rates of gross and net sulfate reduction were also measured in the sediments. It is shown that organic matter (OM) decomposes via six pathways: oxic respiration (35.2%), denitrification (10.4%), MnO2 reduction (3.6%), FeOOH reduction (9.6%), sulfate reduction (14.9%), and methanogenesis (26.4%). In the lake sediments, about half of the benthic O2 flux is used for aerobic respiration, and the rest is used for the regeneration of other electron acceptors produced during the above diagenetic reactions. There is a strong coupling between O2 usage and Mn2+ oxidation. MnO2 is also an important player in Fe and S cycles and in pH and TA balance. Although nitrate concentrations in the overlying water were low, denitrification becomes a quantitatively important pathway for OM decomposition due to the oxidation of NH4 + to NO3 . Finally, despite its low concentration in freshwater, sulfate is an important electron acceptor due to its high efficiency of internal cycling. This paper also discusses quantitatively the relationship between redox reactions and the porewater pH values. It is demonstrated here that pH and pCO2 are sensitive variables that reflect various oxidation and precipitation reactions in porewater, while DIC and TA profiles provide effective constraints on the rates of various diagenetic reactions.  相似文献   

15.
16.
Biogeochemical processes involving acetate in sub-seafloor sediments from piston core PC23B from the Bering Sea shelf break were inferred by examining the stable carbon isotopic relationships between acetate and other relevant carbon compounds: total organic carbon (TOC) in the sediment solid phase, and dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in pore water. Throughout the core, the isotopic composition of acetate (δ13Cacetate), from −31‰ to −29‰, was 13C-depleted by ca. 7‰ vs. DOC (δ13CDOC) and its depth profile approximately paralleled that of δ13CDOC, suggesting that the principal process producing acetate was fermentation of dissolved organic compounds. However, the 13C depletion in δ13Cacetate indicates some contribution of acetogenesis to total acetate production, because acetogenesis results in 13C depletion of the acetate produced. The relative contribution of acetogenesis via the H2/CO2 reaction, calculated by using a two source isotope mixing model, increased with depth in the sulfate reduction zone from 10% to 15% and was constant at 19% in the methanogenic zone. The acetogenic contribution to acetate production in the methanogenic zone underlying the sulfate reduction zone is consistent with reported observations, whereas the occurrence of acetogenesis in the sulfate reduction zone may be related to the contribution of terrestrial organic matter (OM) to the sedimentary OM in that depth interval, because the terrestrial component likely includes precursors that favor organoautotrophic acetogenesis. The high acetate concentration (up to 81 μM) and TOC content (up to 1.4%) at the same depth (<200 cmbsf) suggest that some relationship exists between acetate production rate and TOC content, or that a temperature increase during core storage at room temperature might stimulate acetate-producing microbial activity in the high TOC sediment.  相似文献   

17.
For energetic reasons, iron reduction suppresses methanogenesis in tidal freshwater wetlands; however, when iron reduction is limited by iron oxide availability, methanogenesis dominates anaerobic carbon mineralization. Plants can mediate this microbial competition by releasing oxygen into the rhizosphere and supplying oxidized iron for iron reducers. We utilized a plant removal experiment in two wetland sites to test the hypothesis that, in the absence of plants, rates of iron reduction would be diminished, allowing methanogenesis to dominate anaerobic metabolism. In both sites, methanogenesis was the primary anaerobic mineralization pathway, with iron reduction dominating only early and late in the growing season in the site with a less organic soil. These patterns were not influenced by the presence of plants, demonstrating that plants were not a key control of microbial metabolism. Instead, we suggest that site conditions, including soil chemistry, and temperature are important controls of the pathways of anaerobic metabolism.  相似文献   

18.
The role of acetate in the biogeochemical cycling of organic matter in contemporary marine anoxic sediments of Skan Bay, Alaska was investigated with inhibition and quasi in situ turnover experiments. The turnover time for acetate oxidation in the upper 30 cm of the sediment column is ca. 1 hr. A molybdate inhibition experiment indicated that sulfate reducing bacteria were responsible for more than 95% of acetate oxidation. However, measured acetate oxidation rates exceeded sulfate reduction rates indicating that acetate oxidation rates are overestimated. Values for acetate concentration calculated from sulfate reduction rates (0.3–3.4 μM) were considerably lower than directly measured acetate concentrations (3.1–10.8 μM). Much of the chemically measured acetate may be microbially unavailable, perhaps in the form of a soluble or colloidal complex. A sorption experiment indicates that 10% to 40% of added acetate associates with Skan Bay sediment particles. Production of methane from acetate was detected only at 2 m depth.  相似文献   

19.
A methane-sulfate coupled reaction diffusion model has been developed to describe the inverse relationship commonly observed between methane and sulfate concentrations in the pore waters of anoxic marine sediments. The sediment column was divided into two zones; an upper zone where diagenetic reaction rates are limited by the concentration of oxidizable organic matter and a lower zone in which reaction rates are limited by the concentration of oxidizing agent—sulfate. For each zone differential equations describing the distribution of methane and sulfate were derived. The boundary conditions used to solve these equations resulted in a set of four coupled equations. When fit to data from Saanich Inlet (B.C., Canada) and Skan Bay (Alaska) the model not only reproduces the observed methane and sulfate pore water concentration profiles but also accurately predicts the methane oxidation and sulfate reduction rates. Maximum methane oxidation rates occur at the transition boundary from the upper to the lower layer. In Saanich Inlet sediments from 23 to 40% of the downward sulfate flux is consumed in methane oxidation while in Skan Bay this value is only about 12%.  相似文献   

20.
《Applied Geochemistry》1999,14(1):41-52
Concentrations of S, organic C and Fe were investigated in profiles of sediments from two estuarine systems in the SW of Western Australia. In marine-affected sediments, inorganic S dominates total S and concentrations of total S correlate with Fe and not with organic C. In freshwater sediments, organic S dominates total S and concentrations of total S correlate with organic C and not with Fe. Molar Fe/S ratios in the estuarine sediments decrease with increasing salinity and approach unity for marine conditions. Net accumulation rates of S in sediments were estimated with a numerical computer model, calibrated with published data on profiles of marine sediments for diffusion of SO2−4, sedimentation rates and distributions of S. Measured depth-integrated reduction rates of SO2−4 in the marine-affected estuarine sediments approach those obtained for Fe-limited marine conditions at similar rates of sedimentation. Measured concentrations of inorganic S in anoxic freshwater sediments fit a numerically calculated relationship between inorganic S and sedimentation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号