首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese has been measured in size-fractionated paniculate matter profiles obtained by large volume in situ filtration of the upper 1000 m of the N.W. Atlantic as part of the Warm Core Rings Experiment (WCRE) in 1982. Environments sampled included Warm Core Rings (WCR) 82B and 82H, the entrainment zone at the edge of these rings, the Slope Water surrounding rings, and the Gulf Stream (GS) and Sargasso Sea (SS) from which the rings formed.Manganese concentrations ranged from 10 pmol kg−1 to 10,000 pmol kg−1 with the extreme values observed in the quasi-isolated core waters of WCR 82B and in a tongue of shelf water at the periphery of WCR 82B, respectively. The majority of the Mn was in the 1–53 μm particle size fraction and most Mn was probably close to 1 μm in size. Mn showed no correlation with major biogenic phases indicating that formation by local biological processes was not an important source. Instead, most paniculate Mn present in the waters sampled originated in reducing sediments at the continental margin.A manganese budget for the quasi-isolated core waters of WCR 82B between February and June 1982 showed that most Mn removal was by the aggregation of the small Mn-oxyhydroxide particles into fecal material, followed by sedimentation.Calculations show that WCRs cause offshore particulate Mn transports from the continental margin between 66°W and Cape Hatteras of 8.5 × 104 to 14 × 104 mol d−1 with most derived from the continental shelf. Only 4% of the shelf derived Mn becomes entrained into WCRs and the rest is left to disperse in the Slope Water or enter the circulation of the Gulf Stream. The WCR-induced offshore Mn transports may account for a large fraction of the Mn flux to sediments on the continental slope and upper continental rise.  相似文献   

2.
3.
In Amazon-shelf waters, as salinity increases to 36.5 × 10−3, dissolved uranium activities increase to a maximum of 4.60 dpm 1−1. This value is much higher than the open-ocean value (2.50 dpm 1−1), indicating a source of dissolved uranium to shelf waters in addition to that supplied from open-ocean and riverine waters. Uranium activities are much lower for surface sediments in the Amazon-shelf seabed (mean: 0.69 ±.09 dpm g−1) than for suspended sediments in the Amazon River (1.82 dpm g−1). Data suggest that the loss of particulate uranium from riverine sediments (and the consequent input of dissolved uranium to shelf waters) is probably the result of uranium desorption from the ferric-oxyhydroxide coatings on sediment particles, and/or uranium release by mobilization of the ferric oxyhydroxides. The total flux (i.e., riverine flux plus desorbed-remobilized particulate flux) of dissolved 238U from the Amazon shelf (about 1.2 × 1015 dpm yr−1) constitutes about 15% of uranium input to the world ocean, commensurate to the Amazon River's contribution to world river-water discharge (approximately 18%). Measurement of only the riverine flux of dissolved 238U underestimates, by a factor of about 5, the flux of dissolved238U from the Amazon shelf to the open ocean.  相似文献   

4.
The concentrations of total suspended sediments (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC) were measured in water samples taken monthly in the Apure, Caura and Orinoco rivers during a hydrological cycle (between Sept. 2007 and Aug. 2008). The DOC concentration values ranged between 1.5 and 6.8 mgC l−1 in the Apure River; 2.07 and 4.9 mgC l−1 in the Caura River and 1.66 and 5.35 mgC l−1 in the Orinoco River. The mean concentration of DOC was 3.9 mgC l−1 in the Apure River, 3.24 mgC l−1 in the Caura River and 2.92 mgC l−1 in the Orinoco River at Puerto Ordaz. The three rivers showed a similar temporal pattern in the concentrations of DOC, with higher DOC values during the increasing branch of the hydrograph due to wash-out processes of the organic material stored in soils. The mean concentration values of POC were 1.33 mgC l−1; 0.77 mgC l−1 and 0.91 mgC l−1 in the Apure, Caura and Orinoco rivers, respectively. The inverse relationship found between the percentage in weight of the POC and the concentrations of TSS in the three rivers fits a logarithmic model, as it has been previously reported for other worldwide rivers. The POC concentrations in the Orinoco River showed a positive relationship with the TSS, suggesting that the POC in the Orinoco is the result of terrestrially organic matter. Although the fluxes of organic carbon (OC) in the three studied rivers are dependent on the values of water discharge, the fluxes of DOC during the increasing branch of the hydrograph are higher than those found during the decreasing stage, due to the yield of organic material accumulated in soils during the preceding dry season. The mean annual flux of total organic carbon (TOC) of the Orinoco River at Puerto Ordaz was about 4.27 × 106 TonC yr−1. Of this, 3.28 × 106 TonC yr−1 (77%) represents the flux of DOC and about 0.99 TonC yr−1 (23%) represents the flux of POC. The mean annual input of TOC from the Apure River to the Orinoco River was about 4.92 × 105 TonC yr−1 (11.5%), while the contribution of TOC from the Caura River to the Orinoco River was estimated at 3.05 × 105 TonC yr−1 (7.1%).The values of annual transport of TOC calculated for the Apure, Caura and Orinoco rivers were lower than those reported twenty years ago. This could be related to interannual variations of precipitation in the Orinoco Basin, due to runoff variations can have a strong effect on the fluxes of OC from land to rivers.  相似文献   

5.
The distribution of Mn was examined in the bottom sediments and water column (suspended paniculate matter) of the Laurentian Trough. Gulf of St. Lawrence. A characteristic profile of Mn with depth in the sediment consisted of a Mn-enriched surface oxidized zone, less than 20 mm thick, and a Mn-depleted subsurface reducing zone. A subsurface Mn maximum occurred within the oxidized zone. Below this maximum the concentration dropped sharply to nearly constant residual levels in the reducing zone. The accumulating estuarine sediments are deficient in Mn compared to the river input of suspended matter and are definitely not the ultimate sink for manganese. Manganese escapes from the sediment by diffusion and resuspension, forming Mn-enriched, fine-grained particles which are flushed out in the estuarine circulation. 5.0 × 109gyr?1 of Mn, or 50% more than the river input of dissolved Mn. are exported to the open ocean. In spite of the efficient mobilization and export of Mn, the quantity exported is a small fraction (0.2%) of the total flux to the deep-sea sediments. This is related to the low levels of paniculate matter transported by the St. Lawrence River. The export phénomenon, however, is probably true of many coastal regions of muddy sediments and thus has interesting implications for the oceanic budget of Mn.  相似文献   

6.
Fluoride analyses display downward decreasing pore water gradients in Peru shelf phosphatic muds that require diffusion from the overlying seawater into the sediment column and removal by reaction within the upper few tens of centimeters, presumably by incorporation into carbonate fluorapatite. The profiles can be modeled as first-order F-removal with rate constants of ~3 yr?1 and asymptotic F-concentrations deep in the cores of 35–45 μM, almost one-half the seawater value. The integrated flux of fluoride from seawater into organic-rich shelf sediments in coastal-upwelling zones (phosphatic muds) yields a contemporaneous global F-burial of 0.54 × 1010 mol-F yr?1, about one-fifth the burial in other sinks (mostly carbonates and opal). The associated burial flux of phosphorus in shelf phosphorites is about 1.6 × 1010 mol-P yr?1, comparable to P-burial in the deep sea with organic matter (~1.4 × 1010 mol yr?1) and biogenic carbonates (~1.4 × 1010 mol yr?1). Thus phosphorite formation on the Peru shelf is a significant contemporaneous process.  相似文献   

7.
《Applied Geochemistry》2003,18(5):719-738
The dissolved He content and He isotope ratio are proxy indicators of groundwater evolution in the Shimokita peninsula. The record of 3H and excess bomb tritiogenic 3He reveals the intrusion depth of shallow and young groundwater into deep groundwater. The record of tritiogenic 3He suggests that prior to the period of nuclear testing, the natural production level of 3H irradiated by cosmic rays was probably 6 TU. Helium isotope ratios in the groundwater converge to that of the regional crustal He with increasing depth and dissolved He content. The regional degassed He has a 3He/4He (R) ratio of 7.24 × 10−7 which consists of 6% mantle He (with R=1. 1 × 10−5) and 94% radiogenic He (with R=1 ×10−8). The magnitude of degassing He flux is 5×10−9 m3/m2 a. Based on the accumulation of He, and taking into consideration the degassing He flux, groundwater at depths greater than 300 m below sea level is estimated to be stagnant, exhibiting residence times in excess of 102 Ka.  相似文献   

8.
《Applied Geochemistry》2000,15(8):1137-1167
4He concentrations in excess of the solubility equilibrium with the atmosphere by up to two to three orders of magnitude are observed in the Carrizo Aquifer in Texas, the Ojo Alamo and Nacimiento aquifers in the San Juan Basin, New Mexico, and the Auob Sandstone Aquifer in Namibia. A simple 4He accumulation model is applied to explain these excess 4He concentrations in terms of both in situ production and a crustal flux across the bottom layer of the aquifer. Results from the model simulations suggest variability in the 4He fluxes, ranging from 6×10−6 cm3 STP cm−2 yr−1 for the Auob Sandstone Aquifer to 3.6×10−7 cm3 STP cm−2 yr−1 for the Carrizo aquifer. For the Ojo Alamo and Nacimiento aquifers an intermediate value of 3×10−6 cm3 STP cm−2 yr−1 was estimated. The contribution of in-situ produced 4He to the measured concentrations was also estimated. This contribution is negligible for the Auob Sandstone Aquifer as compared with both the concentrations measured at the top and bottom of the aquifer for most of the pathway. In the Carrizo aquifer, in-situ produced 4He contributes 27.5% and 15.4%, to the total 4He observed at the top and bottom of the aquifer, respectively. For both aquifers of the San Juan Basin in-situ production almost entirely dominates the 4He concentrations at the top of the aquifer for most of the pathway. In contrast, the internal production is negligible as compared with the measured concentrations at the bottom of these aquifers, reaching, at most, 1.1%. The model simulations require an exponential decrease in the horizontal velocity of the water with increasing recharge distance to reproduce the distribution of 4He in these aquifers. For the Auob Sandstone Aquifer the highest range in the velocity values is obtained (25 to 0.4 m yr−1). The simulations for the Carrizo aquifer and both aquifers located in the San Juan Basin require velocities varying from 4 to 0.1 m yr−1, and from 2 to 0.3 m yr−1, respectively. For each aquifer, average permeability values were also estimated. They are generally in agreement with results obtained from pumping tests, hydrodynamic modeling and previous 14C measurements. On the basis of the results obtained by calibrating the model with the measured 4He concentrations, the mean water residence times were estimated. They agree reasonably well with 14C ages. When applied as chronologies for noble gas temperatures in the same aquifers, the calculated 4He ages allow the identification of three different climate periods similar to those previously identified using 14C ages: (1) the Holocene period (0–10 Ka BP), (2) the Last Glacial Maximum (≈18 Ka BP), and (3) the preceeding period (30–150 Ka BP).  相似文献   

9.
The unique KMnO4 degradation products of β-carotene, previously identified as 2,2-dimethyl succinic acid (C6) and 2,2-dimethyl glutaric acid (C7) have been found in the oxidation products of Green River shale (Eocene, 52 × 106yr) and Tasmanian Tasmanite (Permian, 220−274 × 106yr) kerogens. These two compounds were also detected in KMnO4 degradation products of young kerogens from lacustrine and marine sediments. The results indicate that kerogens incorporated carotenoids (possibly β-carotene) at the time of kerogen formation in surface sediments. Both acids are useful markers to obtain information on biological precursors contributing to the formation of fossil kerogens.  相似文献   

10.
Sedimentary methane (CH4) fluxes and oxidation rates were determined over the wet and dry seasons (four measurement campaigns) in Pulicat lake, an extensive shallow estuary in south India. Dissolved CH4 concentrations were measured at 52 locations in December 2000. The annual mean net CH4 flux from Pulicat lake sediments was 3.7 × 109 g yr-1 based on static chamber measurements. A further 1.7 × 109g yr-1 was estimated to be oxidized at the sediment-water interface. The mean dissolved concentration of CH4 was 242nmol |-1 (ranging between 94 and 501 nmol |-1) and the spatial distribution could be explained by tidal dynamics and freshwater input. Sea-air exchange estimates using models, account only for ∼13% (0.5 × 109 g yr-1) of the total CH4 produced in sediments, whereas ebullition appeared to be the major route for loss to the atmosphere (∼ 63% of the net sediment flux). We estimated the total atmospheric source of CH4 from Pulicat lake to be 0.5 to 4.0 × 109g yr-1.  相似文献   

11.
Nineteen sediment cores from the Madeira, Seine, Tagus and Nares Abyssal Plains and the Alboran Sea have been used to evaluate the speciation, fluxes and diagenesis of iodine in the deep sea. The sediments have surficial molar I/C ratios of 10–30 × 10−4 in excess of previous reported values for planktonic material (~1 × 10−4). Solid phase I contents decrease exponentially with depth corresponding to decomposition rate constants of 5–260 × 10−6 yr−1 which vary with the carbon accumulation rate.Iodine species in the pore waters follow a vertical sequence of four zones: 1. a zone of I production where total dissolved iodine (∑I) concentrations initially increase at the seawater-sediment interface; 2. a zone of I oxidation where interconversion of I to IO3 occurs; 3. a zone of IO3 reduction where interconversion of IO3 back to I occurs which corresponds to the suboxic part of the sediment column; and 4. a further zone of I production which is confined to the lower anoxic part of the sediment column. Benthic ∑I fluxes in the Madeira Abyssal Plain measured from shipboard incubation experiments and calculated from porewater gradients are similar, averaging 0.55 and 0.36 × 10−8 μmol cm−2 sec, respectively.In the surface sediment the observed I enrichment results from a quasi-closed cycle for iodine initially involving release of I from decomposing marine organic matter followed by rapid removal onto organic matter at the sediment-seawater interface where I/C regeneration ratios of up to 200 × 10−4 are found, lodate reduction occurs during suboxic diagenesis, after denitrification and before MnO2 reduction, consistent with the sequence of reactions predicted from the free energy yields for organic matter oxidation. There is some further I production in the anoxic section of sediments but at much smaller rates than occur during the interfacial diagenetic cycling.  相似文献   

12.
Dissolved helium concentrations and 3He/4He ratios were measured for 18 groundwater samples collected from the Quaternary confined aquifers in the North China Plain (NCP). The dissolved helium concentrations ranged from 1 × 10−7 to 1 × 10−6 cm3STP·g−1 in the 14 samples from the central plain, but was approximately two orders of magnitude higher, between 6 × 10−6 and 9 × 10−5 cm3STP·g−1, in 4 samples from the coastal plain. Based on these concentrations and the corresponding 3He/4He ratios varying from 0.09 to 0.55 Ra (where Ra is the 3He/4He ratio of air), the dissolved helium in groundwater in the central plain was identified to be primarily a mixture of atmospheric helium with radiogenic helium and a representative radiogenic helium ratio was estimated to be 0.035 Ra. Despite the high fraction of terrigenic 4He in the samples from the coastal plain, their 3He/4He ratios were found to be significantly above this radiogenic value, ranging between 0.20 and 0.37 Ra, indicating the presence of a mantle-derived He component in this area. About 2–4% mantle helium was estimated to be present in the groundwater of the coastal plain, which probably is associated with the regional Cangdong fault and tectonic activities. Based on the radiogenic He component, 4He ages of the groundwater in the central plain were calculated by assuming either pure in situ production or an external helium flux J0 of 4.7 × 10−8 cm3STPcm−2a−1. The estimated 4He ages fall between 9.5 and 51.4 ka and are comparable to the 14C ages, suggesting that the results of 4He dating are reasonable and can be an effective tool to estimate groundwater residence times under suitable conditions.  相似文献   

13.
The factors which control concentrations of soluble inorganic phosphorus in the Amazon estuary are described and the efflux of phosphorus through the estuary is estimated using estuarine data collected on three field excursions (two in December, 1982 and one in May, 1983), and various laboratory mixing experiments. There is evidence to suggest that suspended sediments release significant quantities of inorganic phosphate to the estuarine waters. Bottom sediments collected from the estuary released soluble inorganic phosphorus at rates of approximately 0.2 μM day−1, when suspended in mixtures of seawater and deionized water. Release rates depended on salinity but were independent of sediment concentrations. Inputs of phosphate persisted for approximately 3 days in suspensions with sediment concentrations of 0.5 g l−1, but the duration of release increased to greater than 8 days at concentrations greater than 10 gl−1. A one-dimensional dispersion model was developed incorporating input rates derived from the laboratory mixing experiments. The model predicts phosphate concentrations which are consistent with field observations, and it provides quantitative estimates for total fluxes of soluble inorganic phosphorus to the high salinity fringes of the estuary (~25 ppt) of approximately 15 × 106molesday−1 and 27 × 106molesday−1 during December, 1982 and May, 1983 respectively. The data indicate a significant phosphate loss from estuarine waters at salinities from 0–4 ppt, possibly associated with iron and humate removal. More than 50% of the predicted flux could be contributed by phosphate released from suspended sediments within the turbid part of the estuary.  相似文献   

14.
Radio flux measurements of the Crab nebula have been performed over many years relative to Orion A at 927 MHz and relative to Cygnus A and Virgo A at 151.5 MHz. The inferred average secular rates of decrease in the radio flux of the Crab nebula are d 927 MHz = ?0.18 ± 0.10% yr?1 over 1977–2000 and d 151.5 MHz = ?0.3 ± 0.1% yr?1 over 1980–2003. The weighted mean flux-decrease rate averaged over several years of relative measurements at 86, 151.5, 927, and 8000 MHz is d mw = ?0.17 ± 0.02% yr?1. The secular flux decrease is frequency independent, with an upper limit of |dα/dt| < 3 × 10?4 yr?1 for the absolute value of the rate of change of the spectral index, and remains constant in time when averaged over long time intervals. The results of our measurements at 151.5 and 927 MHz combined with published absolute measurements at 81.5 and 8250 MHz are used to determine the radio spectrum of the Crab nebula for epoch 2010.0.  相似文献   

15.
《Applied Geochemistry》2003,18(10):1653-1662
The through- and out-diffusion of HTO, 36Cl and 125I in Opalinus Clay, an argillaceous rock from the northern part of Switzerland, was studied under different confining pressures between 4 and 15 MPa. The direction of diffusion and the confining pressure were perpendicular to the bedding. Confining pressure had only a small effect on diffusion. An increase in pressure from 4 to 15 MPa resulted in a decrease of the effective diffusion coefficient of ∼20%. Diffusion accessible porosities were not measurably affected. The values of the effective diffusion coefficients, De, ranged between (5.6±0.4)×10−12 and (6.7±0.4)×10−12 m2 s−1 for HTO, (7.1±0.5)×10−13 and (9.1±0.6)×10−13 m2 s−1 for 36Cl and (4.5±0.3)×10−13 and (6.6±0.4)×10−13 m2 s−1 for 125I. The rock capacity factors, α, measured were circa 0.14 for HTO, 0.040 for 36Cl and 0.080 for 125I. Because of anion exclusion effects, anions diffuse slower and exhibit smaller diffusion accessible porosities than the uncharged HTO. Unlike 36Cl, 125I sorbs weakly on Opalinus Clay resulting in a larger rock capacity factor. The sorption coefficient, Kd, for 125I is of the order of 1–2×10−5 m3 kg−1. The effective diffusion coefficient for HTO is in good agreement with values measured in other sedimentary rocks and can be related to the porosity using Archie's Law with exponent m=2.5.  相似文献   

16.
The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U238U activity ratios.The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO3? ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 1010g/yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 1010g/yr, estimated based on its correlation with HCO3? contents of rivers.In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02–0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation.A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U238U activity ratio of 1.20 ± 0.06ismissing. The residence time of uranium isotopes in the oceans estimated from the 238U concentration and the 234U238U A. R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234U flux of about 0.25 dpm/cm2·103 yr into the oceans (about 20% of its river supply) is necessitated.  相似文献   

17.
《China Geology》2021,4(4):658-672
The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial. Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia, and they are the critical media for studying the tectonic evolution of the Bangweulu Block. This study systematically investigated the petrography, zircon U-Pb chronology, and petrogeochemistry of the granitoid extensively exposed in the Lunte area, northeastern Zambia. The results show that the granitoid in the area formed during 2051±13–2009±20 Ma as a result of Paleoproterozoic magmatic events. Geochemical data show that the granites in the area mainly include syenogranites and monzogranites of high-K calc-alkaline series and are characterized by high SiO2 content (72.68% –73.78%) and K2O/Na2O ratio (1.82–2.29). The presence of garnets, the high aluminum saturation index (A/CNK is 1.13–1.21), and the 1.27%–1.95% of corundum molecules jointly indicate that granites in the Lunte area are S-type granites. Rare earth elements in all samples show a rightward inclination and noticeably negative Eu-anomalies (δEu = 0.16–0.40) and are relatively rich in light rare earth elements. Furthermore, the granites are rich in large ion lithophile elements such as Rb, Th, U, and K and are depleted in Ba, Sr, and high field strength elements such as Ta and Nb. In addition, they bear low contents of Cr (6.31×10−6–10.8×10−6), Ni (2.87×10−6–4.76×10−6), and Co (2.62×10−6–3.96×10−6). These data lead to the conclusion that the source rocks are meta-sedimentary rocks. Combining the above results and the study of regional tectonic evolution, the authors suggest that granitoid in the Lunte area were formed in a tectonic environment corresponding to the collision between the Tanzania Craton and the Bangweulu Block. The magmatic activities in this period may be related to the assembly of the Columbia supercontinent.©2021 China Geology Editorial Office.  相似文献   

18.
The Onyx River (Wright Valley, Antarctica) is a dilute meltwater stream originating in the vicinity of the Wright Lower Glacier. It acquires a significant fraction of its salt content when glacial meltwaters contact Wright Valley soils at Lake Brownworth and the concentrations of all ions increase with distance along the 28-km channel down to Lake Vanda. Average millimolar concentrations of major ions at the Vanda weir during the 1980–1981 flow season were: Ca = 0.119; Mg = 0.061; Na = 0.212; K = 0.033; Q = 0.212; SO4 = 0.045; HCO3 = 0.295; and SiO2 = 0.049. Based on the flow measurements of Chinn (1982), this amounts to an annual flux (in moles) to Lake Vanda of: Ca = 0.238 × 106; Mg = 0.122 × 106; Na = 0.424 × 106; K = 0.066 × 106; Cl = 0.424 × 106; SO4 = 0.09 × 106; HCO3 = 0.59 × 106; SiO2 = 0.098 × 106.In spite of the large salt input from this source, equilibrium evaporation of Onyx River water would have resulted in early calcite deposition and in the formation of a Na-Mg-Cl-HCO3 brine rather than in the Ca-Na-Mg-Cl waters observed in Lake Vanda. The river alone could not have produced a brine having the qualitative geochemical features of the lower saline waters of Lake Vanda.It is proposed that the Vanda brine is instead the result of past ( > 1200 yrs BP) mixing events between Onyx River inflows and calcium chloride-rich deep groundwaters derived from the Don Juan Basin. The mixing model presented here shows that the Onyx River is the major contributor of K, HCO3, SO4, and (possibly) Mg found in the lake and a significant contributor (approximately one half) of the observed Na. Calcium and Cl, on the other hand, came largely from deep groundwater sources in the Don Juan Basin. All concentrations except Mg are well predicted by this model. The chemical composition of the geologically recent upper lake is explained in terms of ionic diffusion from the pre-formed brine, coupled with Onyx River inflow. Ionic ratios calculated from this latter model are in very good agreement with those observed in the lake at 35 meters.  相似文献   

19.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

20.
Current deformation in Pribaikalia, Western and Central Mongolia, and Tuva has been studied from measured horizontal GPS velocities and respective computed strain and rotation rates using 1994–2007 data of the Baikal–Mongolian GPS triangulation network.The GPS velocity field shows two main trends: an NE trend within Jonggaria, the Mongolian Altay, and the Great Lakes Valley and an SE trend in the Hangayn and eastern Gobi Altay mountains, and in the Transbaikalian block of the Amur plate. The velocity magnitudes and vectors are consistent with an SE motion of the Amur plate at a rate of ~2 mm/year.The derived strain pattern includes domains of crustal contraction and extension recognized from the magnitudes of relative strains. Shortening predominates in the Gobi and Mongolian Altay and in the Khamar-Daban Range, where it is at ?2 = (19.2 ± 6.0)×10?9 yr?1 being directed northeastward. Extension domains exist in the Baikal rift and in the Busiyngol–West Hangayn area, where the crust is stretching along NW axes at ?1 = (22.2 ± 3.1) × 10–9 yr–1. The eastern Hangayn dome and the Gobi peneplain on its eastern border show low and unstable strain rates. In central and northern Mongolia (Orhon–Selenge basin), shortening and extension are at similar rates: ?2 = (15.4 ± 5.4)×10?9 yr?1 and ?1 = (18.1 ± 3.1)×10?9 yr?1. The strain pattern changes notably in the area of the Mogod earthquake of 1967.Most of rotation throughout Central Asia is clockwise at a low rate of about Ω = 6×10?9 deg·yr?1. High rates of clockwise rotation are observed in the Hangayn domain (18.1 ± 5.2)×10?9 deg·yr?1, in the Gobi Altay (10.4 ± 7.5)×10?9 deg·yr?1, and in the Orhon–Selenge domain (11.9 ± 5.2)×10?9 deg·yr?1. Counterclockwise rotation is restricted to several domains. One is in western Tuva and northwestern Great Lakes Valley of Mongolia (Ω = 3.7×10?9 deg·yr?1). Two more counterclockwise rotation regions occur on both flanks of the Baikal rift: along the craton edge and in basins of Transbaikalia on the rift eastern border, where rotation rates are as high as (13.0 ± 3.9)×10?9 deg·yr?1, while rotation within the Baikal basin does not exceed the measurement error. Another such domain extends from the eastern Hövsgöl area to the Hangayn northern foothills, with the counterclockwise rotation at a highest rate of (16.3 ± 2.8)×10?9 deg·yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号