首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediments, sediment trap material, dominant surface plankton and collected fecal material were sampled concurrently with surface seawater in a coastal Mediterranean ecosystem and analyzed for non-volatile hydrocarbons and chlorinated hydrocarbons. Results showed consistent partitioning of hydrocarbon classes between dissolved and particulate phases of surface waters which appeared to be related to component solubility and particle availability. Analysis of biological materials showed the biota were important not only in packaging residues into large, fast sinking particles, but also in modifying the composition of components through metabolism and selective incorporation into body tissues and feces. Apparent sedimentation rate was calculated by analysis of 210Pb in sediment core samples and used to estimate average deposition rates of organics to the sea/sediment interface. The flux of particles through 100 m, as measured in the trap material in this sampling interval, was sufficient to balance most of the petroleum input to the sediments but accounted for only 17% of the average flux of PCBs to the sediments, and virtually none of the more soluble chlorinated hydrocarbon flux. Vertical transport via large fecal material compared to average background particles was seasonally low corresponding to a seasonal minimum in plankton biomass in late summer. Results show that hydrocarbon residues transported long distances away from input sources are highly modified, pointing to the geochemical significance of physical-chemical partitioning between seawater phases, incorporation into organisms and fecal material and biological/chemical degradation.  相似文献   

2.
The worst environmental pollutants in Anzali International Wetland are oily hydrocarbons especially aromatic and poly aromatic compounds (PAHs). The existence of oily compounds with approximate limit of concentration of 0.1 μg/l in aquatic environment bans the growth of fish larva and causes the generic state manner of animals. Anzali International Wetland, which is situated in the west — southern part of Caspian Sea where has environmental importance in life of living organisms and ecosystems. In this reseach, four sites, Pirbazar, Pasikhan, west and central parts, where are situated in Anzali International Wetland, have been studied in 2002. Waste sedimentation soil Sampling was performed during winter and spring in the above-mentioned regions. In the first stage, the purpose of sampling was to access optimum instrumental conditions and correct and precise procedures. Oily pollutants were extracted from water and it was done by using CC14 solvent after cleaning and concentrating. The extracted samples were identified with gas chromatographic method with using polyaromatic standard solutions. By the powerful GC/MS method; results of qualitative analysis were confirmed. Also by GC/MS using SIM mode quantitative analysis were performed. Quantitative study of polyaromatic compounds has also been done by luminescence spectrophotometry. Some compounds which were identified in the water samples were: olifinic, aromatic and poly — aromatic compounds such as: antracene, fluourine, xylene, methylbenzene, naphthalene and acenaphtylene. Finally, the degree of biodegradation of compounds such as pristan (C19H40) and phytan (C20H42) in water samples was integrated.  相似文献   

3.
《Applied Geochemistry》1998,13(7):851-859
Emerging acceptance of the limitations of separate phase product recovery has spawned interest in the intrinsic alteration of residual separate phase petroleum products. In this study the geochemical changes in a continuous core through soil containing a separate phase diesel fuel #2 (SPD) in contact with groundwater are investigated. Chemical heterogeneities are shown to exist which can be attributed to weathering, particularly intrinsic biodegradation. The results show that the aliphatic hydrocarbon content is reduced and the δ13C ratio of the aliphatic hydrocarbons increased from top to bottom in the core. Both changes are thought to be due to preferential biodegradation of (isotopically lighter) n-alkanes. A slight increase in the relative abundance of shorter chain n-alkanes (<n-C17) was also observed. The distribution of the dominant aromatic hydrocarbons (C0–C3 alkyl-naphthalenes) is remarkably consistent throughout the core, although naphthalene is depleted below the oil–water interface. In spite of low oil saturation (S0), little or no evidence of biodegradation is noted at the uppermost boundary of the SPD. However, intrinsic biodegradation is evident approximately 0.3 m above the oil–water interface in spite of higher S0. The extent of the chemical changes attributable to biodegradation (described above) gradually increases below the oil–water interface, eventually reaching a maximum at the bottom of the SPD profile (∼1.2 m below the interface) where S0 is again reduced. The relatively higher level of biodegradation observed at and below the oil–water interface may be attributed to the reduced S0 in this zone. An estimate of the mass reduction in diesel fuel between the uppermost and bottommost parts of the core is calculated to be 23% (by weight), due predominantly to the biodegradation of n-alkanes.  相似文献   

4.
A suite of 18 oils from the Barrow Island oilfield, Australia, and a non-biodegraded reference oil have been analysed compositionally in order to detail the effect of minor to moderate biodegradation on C5 to C9 hydrocarbons. Carbon isotopic data for individual low molecular weight hydrocarbons were also obtained for six of the oils. The Barrow Island oils came from different production wells, reservoir horizons, and compartments, but have a common source (the Upper Jurassic Dingo Claystone Formation), with some organo-facies differences. Hydrocarbon ratios based on hopanes, steranes, alkylnaphthalenes and alkylphenanthrenes indicate thermal maturities of about 0.8% Rc for most of the oils. The co-occurrence in all the oils of relatively high amounts of 25-norhopanes with C5 to C9 hydrocarbons, aromatic hydrocarbons and cyclic alkanes implies that the oils are the result of multiple charging, with a heavily biodegraded charge being overprinted by fresher and more pristine oil. The later oil charge was itself variably biodegraded, leading to significant compositional variations across the oilfield, which help delineate compartmentalisation. Biodegradation resulted in strong depletion of n-alkanes (>95%) from most of the oils. Benzene and toluene were partially or completely removed from the Barrow Island oils by water washing. However, hydrocarbons with lower water solubility were either not affected by water washing, or water washing had only a minor effect. There are three main controls on the susceptibility to biodegradation of cyclic, branched and aromatic low molecular weight hydrocarbons: carbon skeleton, degree of alkylation, and position of alkylation. Firstly, ring preference ratios at C6 and C7 show that isoalkanes are retained preferentially relative to alkylcyclohexanes, and to some extent alkylcyclopentanes. Dimethylpentanes are substantially more resistant to biodegradation than most dimethylcyclopentanes, but methylhexanes are depleted faster than methylpentanes and dimethylcyclopentanes. For C8 and C9 hydrocarbons, alkylcyclohexanes are more resistant to biodegradation than linear alkanes. Secondly, there is a trend of lower susceptibility to biodegradation with greater alkyl substitution for isoalkanes, alkylcyclohexanes, alkylcyclopentanes and alkylbenzenes. Thirdly, the position of alkylation has a strong control, with adjacent methyl groups reducing the susceptibility of an isomer to biodegradation. 1,2,3-Trimethylbenzene is the most resistant of the C3 alkylbenzene isomers during moderate biodegradation. 2-Methylalkanes are the most susceptible branched alkanes to biodegradation, 3-methylalkanes are the most resistant and 4-methylalkanes have intermediate resistance. Therefore, terminal methyl groups are more prone to bacterial attack compared to mid-chain isomers, and C3 carbon chains are more readily utilised than C2 carbon chains. 1,1-Dimethylcyclopentane and 1,1-dimethylcyclohexane are the most resistant of the alkylcyclohexanes and alkylcyclopentanes to biodegradation. The straight-chained and branched C5–C9 alkanes are isotopically light (depleted in 13C) relative to cycloalkanes and aromatic hydrocarbons. The effects of biodegradation consistently lead to enrichment in 13C for each remaining hydrocarbon, due to preferential removal of 12C. Differences in the rates of biodegradation of low molecular weight hydrocarbons shown by compositional data are also reflected in the level of enrichment in 13C. The carbon isotopic effects of biodegradation show a decreasing level of isotopic enrichments in 13C with increasing molecular weight. This suggests that the kinetic isotope effect associated with biodegradation is site-specific and often related to a terminal carbon, where its impact on the isotopic composition becomes progressively ‘diluted’ with increasing carbon number.  相似文献   

5.
Compound-specific isotope analysis has become an important tool in environmental studies and is an especially powerful way to evaluate biodegradation of hydrocarbons. Here, carbon isotope ratios of light hydrocarbons were used to characterise in-reservoir biodegradation in the Gullfaks oil field, offshore Norway. Increasing biodegradation, as characterised, for example, by increasing concentration ratios of Pr/n-C17 and Ph/n-C18, and decreasing concentrations of individual light hydrocarbons were correlated to 13C-enrichment of the light hydrocarbons. The δ13C values of C4 to C9n-alkanes increase by 7-3‰ within the six oil samples from the Brent Group of the Gullfaks oil field, slight changes (1-3‰) being observed for several branched alkanes and benzene, whereas no change (<1‰) in δ13C occurs for cyclohexane, methylcyclohexane, and toluene. Application of the Rayleigh equation demonstrated high to fair correlation of concentration and isotope data of i- and n-pentane, n-hexane, and n-heptane, documenting that biodegradation in reservoirs can be described by the Rayleigh model. Using the appropriate isotope fractionation factor of n-hexane, derived from laboratory experiments, quantification of the loss of this petroleum constituent due to biodegradation is possible. Toluene, which is known to be highly susceptible to biodegradation, is not degraded within the Gullfaks oil field, implying that the local microbial community exhibits rather pronounced substrate specificities. The evaluation of combined molecular and isotopic data expands our understanding of the anaerobic degradation processes within this oil field and provides insight into the degradative capabilities of the microorganisms. Additionally, isotope analysis of unbiodegraded to slightly biodegraded crude oils from several oil fields surrounding Gullfaks illustrates the heterogeneity in isotopic composition of the light hydrocarbons due to source effects. This indicates that both source and also maturity effects have to be well constrained when using compound-specific isotope analysis for the assessment of biodegradation.  相似文献   

6.
Greenschist facies rocks of the stratiform Cu-deposit of Tisová contain aliphatic hydrocarbons in the n-C13 to n-C22 range and n-fatty acids in the range of n-C8 to n-C22. The amount of n-fatty acids varies from 3.3 to 13.5 g. g–1. The presence of isoprenoid hydrocarbons, phytane and pristane, and the prevalence of even-numbered fatty acids over the odd ones give evidence of the biogenic origin of isolated substances. The CPI values of hydrocarbons and n-fatty acids and the number of hydrocarbons with a higher molecular weight increase in the deposit in stratigraphically upward direction. The variations in composition of organic matter in different horizons of the ore deposit are suggested to be the result of thermal alteration and/or alteration via the catalytic activity of ore minerals.  相似文献   

7.
The objectives of this study were to identify the chlorinated volatile organic compounds near the water surface of two heavily polluted rivers in the south of Taiwan and compare their concentration distributions. Air samples were collected seasonally at the upstream, midstream and downstream water surfaces of each river and the chlorinated volatile organic compounds were analyzed qualitatively and quantitatively by gas chromatography and electron capture detector. Totally, twelve kinds of chlorinated volatile organic compounds were found at the water surfaces of both rivers and many of them were reported to be carcinogenic or probably carcinogenic to human. The results showed that each chlorinated volatile organic compound had its own distribution pattern and no good correlation of chlorinated volatile organic compounds between both rivers was obtained. The chlorinated volatile organic compounds identified at the river water surface of Fong Shan Stream showed much higher concentration than those of Chuen-Tsen River. Several chlorinated volatile organic compounds, including chlorodibromomethane, hexachlorobutadiene, 1,1,2,2-tetrachloroethene and 1,2-dibromo-3-chloropropane were found with much higher concentration (mean concentrations of 124.5 μg/m3, 334.5 μg/m3, 92.2 μg/m3, 268.4 μg/m3, respectively) at the water surface of Fong Shan Stream in some seasons (especially spring and summer, summer and winter, spring and winter, spring and summer, respectively) and they were reported to be possibly carcinogenic to human. Therefore, it may be concluded that the people living close to Fong Shan Stream possibly had higher health risks due to the release of volatile organic compounds from the heavily polluted river.  相似文献   

8.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   

9.
Biodegradation is one of the main natural attenuation processes in groundwater contaminated with petroleum hydrocarbons. In this work, preliminary studies have been carried out by analyzing the concentrations of total petroleum hydrocarbons (TPH), dissolved inorganic carbon (DIC), dominant terminal electron accepters or donors, as well as δ 13CDIC and δ 34SSO4, to reveal the biodegradation mechanism of petroleum hydrocarbons in a contaminated site. The results show that along groundwater flow in the central line of the plume, the concentrations of electron acceptors, pH, and E h increased but TPH and DIC decreased. The δ 13CDIC values of the contaminated groundwater were in the range of ?14.02 to ?22.28 ‰PDB and ?7.71 to 8.36 ‰PDB, which reflected a significant depletion and enrichment of 13C, respectively. The increase of DIC is believed to result from the non-methanogenic and methanogenic biodegradation of petroleum hydrocarbon in groundwater. Meanwhile, from the contaminated source to the downgradient of the plume, the 34S in the contaminated groundwater became more depleted. The Rayleigh model calculation confirmed the occurrence of bacterial sulfate reduction as a biodegradation pathway of the petroleum hydrocarbon in the contaminated aquifers. It was concluded that stable isotope measurements, combined with other biogeochemical measurements, can be a useful tool to prove the occurrence of the biodegradation process and to identify the dominant terminal electron-accepting process in contaminated aquifers.  相似文献   

10.
A consequence of the biodegradation of petroleum is that lower molecular weight compounds are removed preferentially to higher molecular weight (HMW) compounds greater than triacontane (n-C30). The extent to which the latter compounds are biodegraded has rarely been studied. Reasons for this include the technical difficulties associated with carrying out biodegradability tests with solid, water-insoluble substances and the limits of the analytical techniques, such as gas chromatography (GC).A quantitative high temperature GC (HTGC) method was developed to monitor the biodegradation of the aliphatic fraction of a waxy Indonesian oil by Pseudomonas fluorescens. Recoveries of over 90% were obtained for n-alkanes up to hexacontane (C60) using liquid-liquid continuous extraction. After only 14 days, 80% of the aliphatic hydrocarbons had been degraded. At the end of the 136-day study, 14% of the original fraction remained. This comprised mainly C40+ compounds. No decrease in the concentrations of compounds above C45 was observed. However, the use of a rapid screening biodegradation method provided tentative proof that Pseudomonas fluorescens was capable of utilising n-alkanes up to C60 once the bacteria had acclimated to HMW alkanes.  相似文献   

11.
This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (δ34S-SO4, δ13C-CH4, δ13C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L−1 total phenols) in the plume by 50% to ∼70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L−1 to >350 mg L−1, (ii) enhanced the activity of SO4-reducing microorganisms (marked by a declining SO4 concentration with corresponding increase in SO434S to values >7–14‰V-CDT relative to background values of 1.9–6.5‰V-CDT), and (iii) where the TDIC increase is greatest, has changed TDIC-δ13C from values of −10 to −15‰V-PDB to ∼−20‰V-PDB. This indicates an increase in the relative importance of respiration processes (including denitrification and anaerobic methane oxidation, AMO) that yield 13C-depleted TDIC over fermentation and acetoclastic methanogenesis that yield 13C-enriched TDIC in the plume, leading to higher contaminant turnover. The plume fringe was found to be a zone of enhanced biodegradation by SO4-reduction and methanogenesis. Isotopically heavy methane compositions (up to −47.8‰V-PDB) and trends between δ13C-TDIC and δ13C-CH4 suggest that AMO occurs at the plume fringe where the contaminant concentrations have been reduced by the PAT system. Mass and isotope balances for inorganic carbon in the plume confirm the shift in spatial dominance of different biodegradation processes and significant increase in contribution of anaerobic respiration for contaminant biodegradation in zones targeted by the PAT system. The enhanced in situ biodegradation results from a reduction in organic contaminant concentrations in the plume to levels below those that formerly suppressed microbial activity, combined with increased supply of soluble electron acceptors (e.g. nitrate) into the plume by dispersion. An interruption of the PAT system and recovery of the dissolved organic contaminant concentrations towards former values highlights the dynamic nature of this enhancement on restoration and relatively rapid response of the aquifer microorganisms to changing conditions induced by the PAT system. In situ restoration using this combined engineered and passive approach has the potential to manage plumes of biodegradable contaminants over shorter timescales than would be possible using these methods independently. The application of PAT in this way strongly depends on the ability to ensure an adequate flux of dissolved electron acceptors into the plume by advection and dispersion, particularly in heterogeneous aquifers.  相似文献   

12.
Concentration of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenyltrichloroethane), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBs (total polychlorinated biphenyls) and total chlordanes (oxy-, α-, and γ-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstream of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Total hydrocarbons (THC), normalized to the fine-grain fraction (clay + silt, < 63 μm), ranged from 120 μg g?1 to, 1,900 μg g?1 fine-grain sediment. The hydrocarbons were dominated by the unresolved complex mixture (UCM), with total polycyclic aromatic hydrocarbons (PAHs) concentrations ranging from 4 μg g?1 to 33 μg g?1 fine-grain sediment. Alkyl-substituted compounds (e.g., C1 to C4 methyl groups) of naphthalene, fluorene, phenanthrere + anthracene, and chrysene series dominated the polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products (i.e., pyrogenic sources) and direct discharges of petroleum products. Total PCB concentrations ranged from 0.075 μg g?1 to 2.6 μg g?1 fine-grain sediment, with highest concentrations in the Anacostia River. Four to six C1-substituted biphenyls were the most-prevalent PCBs. Variability in the PCB distribution was observed in different sampling areas, reflecting, differing proportion of Arochlor inputs and degradation. The concentration of all contaminants was generally higher in sediments closer to known sewer outfalls, with concentrations of total hydrocarbon, PAHs, and PCBs as high as 6,900 μg g?1, 620 μg g?1, and 20 μg g?1 fine-grain sediment, respectively. Highest PCB concentrations were found in two outfalls that drain into the Tidal Basin. Concentrations of organic contaminants from sewers draining to the Washington Ship Channel and Anacostia River had higher concentrations than sediments of the mid-channel or river. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. Whereas most point-source contaninant inputs have been regulated, the importance of nonpoint source inputs must be assessed for their potential addition of contaminants to aquatic ecosystems. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed.  相似文献   

13.
The removal of petroleum and petroleum-based products from the environment is of great importance. The objectives of this study were to investigate the most suitable physiological conditions and the effects of additional carbon, nitrogen and surfactant sources on petroleum biodegradation by Klebsiella pneumoniae ATCC13883 isolated from drilling fluid and to evaluate petroleum biodegradation with detailed hydrocarbon analysis by GC–MS. The results indicated that the highest biodegradation rate of 66.5% for K. pneumoniae was obtained under the conditions of pH 7, petroleum concentration 1% (v/v) and 7-day incubation at 150 rpm and 25 °C, proving to be the most effective physical conditions for petroleum biodegradation in this present study. Additional sources such as Triton X: 100, glucose and yeast extract significantly enhanced the petroleum biodegradation of K. pneumoniae to 68, 71 and 72.5%, respectively. In the last stage of this study, biodegradation rates were above 90% for hydrocarbons ranging from C10 and C20, above 70% for hydrocarbons ranging from C21 and C22 and above 40% for hydrocarbons ranging from C31 and C32. In conclusion, oil field adapted K. pneumoniae could efficiently degrade short-, medium- and long-chain alkanes in petroleum and thus is a potential source for advanced petroleum treatment.  相似文献   

14.
Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much information regarding the genetic origin and alteration of crude oils. But secondary alterations—especially biodegradation—have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6–C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6–C7 cycloalkanes. For branched C6–C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6–C7 LHs. There is a particular case: although 2,2,3-trimethylbutane has a relative higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2-Dimethylpentane is the most resistant to biodegradation in branched C6–C7 alkanes. Furthermore, the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango’s LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the “Biodegraded” zone. When the heptane value is 0–21 and the isoheptane value is 0–2.6, the crude oil in Dawanqi Oilfield is defined as the “Biodegraded” zone.  相似文献   

15.
A diffusion-diagenesis model of the sulfur cycle is developed to calculate theoretical distributions of stable sulfur isotopes in marine sediments. The model describes the depth variation in δ34S of dissolved sulfate and H2S. and of pyrite. The effects of sulfate reduction, sulfate and H2S diffusion. and of sedimentation are considered as well as the bacterial isotope fractionation and the degree of pyrite formation. Under open system conditions of sulfur diagenesis the isotopic difference, ΔSO2?4 — H2S, tends to increase with depth being smaller than the bacterial fractionation factor near the sediment surface and larger in deeper layers. The two isotopes in SO2?4 or in H2S do not diffuse in the same proportion as they occur in the porewater. This explains why sulfur, which is incorporated from seawater sulfate by diffusion and precipitation as pyrite, can be enriched in 32S relative to the seawater sulfate. The model calculations demonstrate the importance of taking the whole dynamic sulfur cycle into account before drawing conclusions about sulfur diagenesis from the stable isotope distribution.  相似文献   

16.
The stable hydrogen isotopic compositions (δD) of selected aliphatic hydrocarbons (n-alkanes and isoprenoids) in eight crude oils of similar source and thermal maturity from the Upper Indus Basin (Pakistan) were measured. The oils are derived from a source rock deposited in a shallow marine environment. The low level of biodegradation under natural reservoir conditions was established on the basis of biomarker and aromatic hydrocarbon distributions. A plot of pristane/n-C17 alkane (Pr/n-C17) and/or phytane/n-C18 alkane (Ph/n-C18) ratios against American Petroleum Institute (API) gravity shows an inverse correlation. High Pr/n-C17 and Ph/n-C18 values and low API gravity values in some of the oils are consistent with relatively low levels of biodegradation. For the same oils, δD values for the n-alkanes relative to the isoprenoids are enriched in deuterium (D). The data are consistent with the removal of D-depleted low molecular weight (LMW) n-alkanes (C14–C22) from the oils. The δD values of isoprenoids do not change with progressive biodegradation and are similar for all the samples. The average D enrichment for n-alkanes with respect to the isoprenoids is found to be as much as 35‰ for the most biodegraded sample. For example, the moderately biodegraded oils show an unresolved complex mixture (UCM), loss of LMW n-alkanes (<C15) and moderate changes in the alkyl naphthalene distributions. The relative susceptibility of alkyl naphthalenes at low levels of biodegradation is discussed. The alkyl naphthalene biodegradation ratios were determined to assess the effect of biodegradation. The dimethyl, trimethyl and tetramethyl naphthalene biodegradation ratios show significant differences with increasing extent of biodegradation.  相似文献   

17.
监测自然衰减(monitoring natural attenuation,MNA)技术是目前普遍认可的去除地下水中挥发性有机污染物(volatile organic compounds,VOCs)的技术。但受其修复周期长、监测费用昂贵等因素的影响,实地开展MNA技术修复污染场地具有一定的局限性。基于此,本研究运用多相流数值模拟手段识别了某石油污染场地内典型VOCs污染物(苯、甲苯、萘)在地下水中的自然衰减过程并评估了其自然衰减能力。结果表明:采用TMVOC所建立的多相流数值模拟模型能较好地预测和识别VOCs在地下水中的衰减规律;在研究区中,苯、甲苯和萘由于理化性质差异,在地下水中的污染羽分布特征不同,其自然衰减过程受挥发、吸附和生物降解作用的影响程度也不同;挥发和生物降解作用对VOCs自然衰减的影响程度均为苯>甲苯>萘,而吸附作用对VOCs自然衰减的影响程度为萘>甲苯>苯;在污染源被阻断的前提下,苯、甲苯和萘分别在泄漏发生7.0、6.5和6.0年后通过自然衰减达到理想去除效果。本文研究成果可以为水文地质条件类似的VOCs污染场地MNA修复方案的制定和修复效果评估提供理论支撑。  相似文献   

18.
Conventional biomarker studies typically interpret the distribution, structure and stable isotopic (e.g. 13C, D) composition of sedimentary hydrocarbons and polar compounds. However, compound and compound class specific 14C analysis (CSRA) is becoming increasingly relevant for characterising millennial scale residence and mobilisation of sedimentary organic carbon (OC). Here, the 14C content of the aliphatic and bulk fractions from shallow cores from the hypersaline playa, Lake Tyrrell, southeast Australia were compared. The aliphatic hydrocarbon fractions (predominantly n-alkanes) were substantially older than the corresponding bulk fractions, indicating the presence of active reservoirs of ancient carbon, likely derived from aeolian reworking of sediments. The 14C ages of the aliphatic hydrocarbons in the core revealed two noticeable shifts in age and source of ancient OC that were not apparent using biomarker composition and sedimentology alone. The study shows that aliphatic hydrocarbons are relatively simple to isolate, even from organically lean (ca. 0.05% TOC) terrestrial sediments, and their 14C ages yield information about carbon mobilisation and preservation not amenable to conventional analysis.  相似文献   

19.
Microbial and photochemical decomposition are two major processes regulating organic matter (OM) transformation in the global carbon cycle. However, photo-oxidation is not as well understood as biodegradation in terms of its impact on OM alteration in terrigenous environments. We examined microbial and photochemical transformation of OM and lignin derived phenols in two plant litters (corn leaves and pine needles). Plant litter was incubated in the laboratory over 3 months and compositional changes to OM were measured using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry. We also examined the susceptibility of soil organic matter (SOM) to ultraviolet (UV) radiation. Solid-state 13C NMR spectra showed that O-alkyl type structures (mainly from carbohydrates) decreased during biodegradation and the loss of small carbohydrates and aliphatic molecules was observed by solution-state 1H NMR spectra of water extractable OM from biodegraded litters. Photochemical products were detected in the aliphatic regions of NaOH extracts from both litter samples by solution-state 1H NMR. Photo-oxidation also increased the solubility of SOM, which was attributed to the enhanced oxidation of lignin derived phenols and photochemical degradation of macromolecular SOM species (as observed by diffusion edited 1H NMR). Overall, our data collectively suggests that while biodegradation predominates in litter decomposition, photo-oxidation alters litter OM chemistry and plays a role in destabilizing SOM in soils exposed to UV radiation.  相似文献   

20.
Halogen ratios (Br/Cl and I/Cl) and concentrations provide important information about how sedimentary formation waters acquire their salinity, but the possible influence of organic Br derived from sedimentary wall-rocks is rarely quantified. Here, it is demonstrated that Br/Cl versus I/Cl mixing diagrams can be used to deconvolve organic Br contributions; that organic matter has a limited range of Br/I ratios; and that organic Br is a more significant component in Zn–Pb deposit ore fluids than previously recognised. The significance of these findings is illustrated for the Lennard Shelf Zn–Pb deposits of Western Australia.Fluid inclusions related to Lennard Shelf Zn–Pb mineralisation have variable salinity and hydrocarbon contents. The halogen data from these fluid inclusions require mixing of three fluid end-members: (1) an evaporated seawater bittern brine (30 wt.% NaCl equiv.) with greater than seawater Br/Cl ratio; (2) a lower salinity pore fluid (?5 wt.% NaCl equiv.) with moderately elevated Br/Cl and I/Cl; and (3) fluids with Br/Cl ratios of ~5 times seawater and extremely elevated I/Cl ratios of ~11,500 times seawater. The first two fluids have 40Ar/36Ar of 300–400 and greater than air saturated water 36Ar concentrations that are typical of fluid inclusions related to Zn–Pb mineralisation. The third ‘organic-rich’ fluid has the highest 40Ar/36Ar ratio of up to 1500 and a depleted 36Ar concentration.Mineralisation is interpreted to have resulted from mixing of Zn-rich evaporitic brines and H2S present in hydrocarbons. It is suggested that aqueous fluids acquired organic Br and I from hydrocarbons, and that hydrocarbons exsolving from the aqueous fluid removed noble gases from solution. Interaction of variably saline brines and hydrocarbons could account for the variable Br/Cl and I/Cl composition, and 36Ar concentrations, recorded by Lennard Shelf fluid inclusions. The distinct 40Ar/36Ar signature of the fluid with the highest I/Cl ratio suggests the hydrocarbons and brines were sourced independently from different parts of the sedimentary basin. These data indicate the complementary nature of halogen and noble gas analysis and provide new constraints on important mixing processes during sediment-hosted Zn–Pb mineralisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号