首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between −2.3‰ and +1.3‰. Primary hematite (δ56Fe: −0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe (δ56Fe: −0.5‰) leached from the crystalline basement. Occasional input of CO2-rich waters resulted in precipitation of isotopically light siderite (δ56Fe: −1.4 to −0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.  相似文献   

2.
We discuss the nature of the ore-forming hydrothermal fluid in the Noya gold-bearing calcite-quartz-adularia veins of central Kyushu, Japan on the basis of oxygen, carbon, and strontium isotope ratios, and aqueous speciation calculations for the present-day geothermal fluid. The isotopic values of the Noya ore-forming fluid were estimated to be −6.5‰ for δ13C and −7.5‰ for δ18O. The oxygen isotopic equilibrium temperatures for vein calcite are more than 180°C at the bottom of the Noya mineralization zone, and decrease with increasing elevation. As the temperature decreased, the dominant carbon species in the fluid changed from H2CO3 to HCO3- at about 120°C. The equilibrium temperatures for vein quartz are consistent with the calcite calculations. The carbon and oxygen isotope trends of the Noya vein calcite and the isotope ratios of strontium suggest that the fluids that precipitated the Noya veins were controlled by an andesite-dominated geology. Chondrite-normalized REE patterns for the white-colored veins from wells 51-WT-1 and 51-WT-2 displayed a light REE-rich pattern with positive Eu anomalies, suggesting the existence of a reducing environment for the fluid. The pyrite-rich gray-colored veins and a silicified rock from well 51-WT-2 showed higher REE concentrations than did the white veins. Altered host andesitic rocks have similar REE patterns to that of the silicified rock, and have higher REE contents than the others in the drill cores. Aqueous speciation calculations showed that the fluid in the hydrothermal reservoir is currently in muscovite stability. The fluid at the ore-mineralization stage may have contained more potassium or have had a higher pH, so that adularia precipitated with calcite and quartz, as well as gold. Fluid boiling at depth in the system produced the gold-bearing calcite-quartz-adularia veins.  相似文献   

3.
《Ore Geology Reviews》2008,33(3-4):629-650
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

4.
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

5.
Magnesite, siderite and dolomite are characteristic alteration minerals occurring in Miocene hanging wall rocks of dacitic composition which host the Kuroko orebodies. These carbonates generally occur in a more stratigraphically upper horizon than chlorite alteration zone surrounding the orebodies. The Mg/(Mg+Fe) ratios of the carbonates decrease from the central alteration zone to marginal zone. The Mg/(Mg+Fe) ratios of carbonates and chlorite positively correlate. The δ18O and δ13C values of magnesite, siderite and dolomite positively correlate with each other and lie between the igneous and marine carbonate values. The petrographic, isotopic and fluid inclusion characteristics and thermochemical modelling calculations indicate that magnesite and dolomite formed in the central zone close to the orebodies due to the interaction of hydrothermal solutions with the biogenic marine carbonates. Calcite formed further from the orebodies from hydrothermal fluids which did not contain a biogenic marine carbon component. The compositional and textural relationships indicate that superimposed alterations (chlorite alteration and carbonate alteration) occurred in hanging wall rocks. The mode of occurrences and the Mg/(Mg+Fe) ratios of magnesite and dolomite occurring in hanging wallrocks are useful in the exploration for concealed volcanogenic massive sulfide-sulfate deposits. Received: 9 September 1997 / Accepted: 23 September 1997  相似文献   

6.
The feasibility of in situ stable Fe isotope ratio measurements using UV-femtosecond laser ablation connected to a multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been investigated. Different types of matrices, independently determined by solution MC-ICP-MS after chromatographic separation of Fe, have been analysed by laser ablation using the isotopically certified iron reference material IRMM-014 as the bracketing standard. The samples have been pure iron metal (JM Puratronic), Fe-meteorites (North Chile, Glenormiston and Toluca), the meteorite phases kamacite and taenite in Toluca and Fe-sulphides. Furthermore, Fe isotope ratios from hydrothermal hematite, siderite and goethite from an old mining area in the Schwarzwald, Germany, and of magnetite from the metamorphic Biwabik iron formation have been determined. The results show that a precision of better than 0.1‰ (2 sigma) can be achieved with laser ablation and that all the results obtained agree with those determined by solution ICP to better than 0.1‰. This precision and accuracy is achievable in both raster and spot ablation mode. A matrix-matched bracketing standard is not required , and all these materials can be measured accurately against a metal standard. The hydrothermal minerals show significant Fe isotope zonations. In some samples the range of δ56Fe in a single aggregate encompasses the entire spectrum of ratios found by bulk solution analyses in multiple samples distributed over the whole mining district. For example, isotopic zonations found in secondary fibrous hematites show a continuous change in the δ56Fe values from −0.5‰ in the core to −1.8‰ in the rim. Primary hydrothermal siderite shows the reverse pattern with lighter values in the core than in the rim. While the siderite is thought to record primary fluid histories, the hematite pattern is interpreted as a reworked isotopic signature generated by oxic dissolution of primary zoned siderite and immediate close range re-precipitation of the oxidized Fe. Abrupt changes are documented for secondary goethite showing a distinct overgrowth that is 0.4‰ lighter than the core of the grain. If indeed Fe isotopes in secondary minerals from hydrothermal ore deposits record the initial isotopic signatures of their precursor minerals, and these in turn record hydrothermal fluid histories, then the tools are in place for a detailed reconstruction of the deposit‘s genesis. We expect similar observations from other Fe-rich deposits formed at intermediate and low-temperatures (e.g. banded iron formations). Laser ablation now provides us with the spatial resolution that adds a further dimension to our interpretation of stable Fe-isotope fractionation.  相似文献   

7.
The Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consisting of three porphyry copper orebodies of Zhushahong, Tongchang and Fujiawu from northwest to southeast. It contains 1168 Mt of ores with 0.5% Cu and 0.01% Mo. The Dexing deposit is hosted by Middle Jurassic granodiorite porphyries and pelitic schist of Proterozoic age. The Tongchang granodiorite porphyry has a medium K cal‐alkaline series, with medium K2O content (1.94–2.07 wt%), and low K2O/(Na2O + K2O) (0.33–0.84) ratios. They have high large‐ion lithophile elements, high light rare‐earth elements, and low high‐field‐strength elements. The hydrothermal alteration at Tongchang is divided into four alteration mineral assemblages and related vein systems. They are early K‐feldspar alteration and A vein; transitional (chlorite + illite) alteration and B vein; late phyllic (quartz + muscovite) alteration and D vein; and latest carbonate, sulfate and oxide alteration and hematite veins. Primary fluid inclusions in quartz from phyllic alteration assemblage include liquid‐rich (type 1), vapor‐rich (type 2) and halite‐bearing ones (type 3). These provide trapping pressures of 20–400 ´ 105 Pa of fluids responsible for the formation of D veins. Igneous biotite from least altered granochiorite porphyry and hydrothermal muscovite in mineralized granodiorite porphyry possess δ18O and δD values of 4.6‰ and ?87‰ for biotite and 7.1–8.9‰, ?71 to ?73‰ for muscovite. Stable isotopic composition of the hydrothermal water suggests a magmatic origin. The carbon and oxygen isotope for hydrothermal calcite are ?4.8 to ?6.2‰ and 6.8–18.8‰, respectively. The δ34S of pyrite in quartz vein ranges from ?0.1 to 3‰, whereas δ34S for chalcopyrite in calcite veins ranges from 4 to 5‰. These are similar to the results of previous studies, and suggest a magmatic origin for sulfur. Results from alteration assemblages and vein system observation, as well as geochemical, fluid inclusion, stable isotope studies indicate that the involvement of hydrothermal fluids exsolved from a crystallizing melt are responsible for the formation of Tongchang porphyry Cu‐Mo orebodies in Dexing porphyry deposit.  相似文献   

8.
A calcic skarn deposit occurs along the contact zone between Oligo-Miocene Çatalda? Granitoid and Mesozoic limestones in Susurluk, northwestern Turkey. The skarn zone with little or no retrograde stage is represented by fluid inclusions with high homogenization temperatures (up to >600 °C) and a wide range of salinity (12 to >70 wt.% NaCl). Pluton-derived fluids facilitated occurrence of continuous prograde reactions in the country rocks (particularly in the proximal zone) and oxygen isotopic depletion in calc-silicate and calcite minerals. δ18O of anhydrous minerals within proximal and distal zones indicate that skarn-forming fluids had a magmatic origin. The δ18O values are 5.93–9.08‰ (mean 6.8‰) for garnet, 4.08–9.94‰ (mean 6.4‰) for pyroxene, 4.89–7.92‰ (mean 6.4‰) for wollastonite and 6.65–8.28‰ (mean 7.5‰) for vesuvianite. Temperatures estimated by isotopic compositions of mineral pairs are significantly lower than those measured from the fluid inclusions, indicating that isotopic equilibrium is not preserved between the skarn minerals. δ18O and δ13C values are systematically depleted from marbles to skarn carbonates. Calc-silicate forming reactions and permeability increase triggered by volatilization and consequent strong infiltration of H2O-rich siliceous fluids into the system promoted fluid–rock interaction causing isotopic resetting and isotopic depletion of silicates (e.g. pyroxene and wollastonite) and skarn calcites.  相似文献   

9.
World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of?~?130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of?~?+1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites were formed at temperatures of?~?250 °C indicating a relatively heavy fluid in equilibrium with siderite of 13 ‰ δ18OSMOW, which is in the range of diagenetic/metamorphic fluids and reflects the?±?complete equilibration with the host rocks. Carbon isotope evidence shows that the fluid forming the siderites underwent a much higher interaction with the host rocks resulting in a lowering of the δ13C numbers (?3,3 to ?3,7 ‰). The light carbon was most probably derived from decaying hydrocarbons in the Riphean sediments. In a very early stage after sedimentation of the Satka Formation (~1,550 Ma) magnesite was formed by seepage reflux of evaporitic bittern brines at the stage of riftogenic activity in the region (1,380–1,350 Ma). Sedimentation of the Bakal Formation (~1,430 Ma) and intrusion of diabase dykes (1,386?±?1,4 Ma) followed. Diagenetic/epigenetic mobilization of these buried fluids at?~?1,100 Ma resulted in the formation of hydrothermal siderite bodies.  相似文献   

10.
Abstract: Predominant Zn-rich ore bodies were found to a deep part of the Sakonishi area in the Kamioka mining district, Japan. The ore mineralization was recognized at 230 to 300m above sea level in the Sakonishi area. Since crystalline limestone is broadly distributed over the area, and the variation in isotopic composition is easily detected, the isotopic prospecting should be powerful in surveying of the extent of the ore bodies and the related hydrothermal system. Although isotopic anomalies have been extracted two-dimensionally so far, three-dimensional information is possibly more powerful. In this paper, Zn-rich ore bodies in the Sakonishi area are treated as hydrothermal ore deposits, and the importance of the activity of hydrothermal fluids during mineralization is emphasized. Oxygen and carbon isotopic ‘iso–surfaces’ are three-dimensionally calculated for the Sakonishi area. The δ18O values of crystalline limestone from the surface and from the drill holes range from +8. 1 to +21. 1% and from –2. 7 to +20. 4%, respectively. The δ13C values of crystalline limestone from the surface and from the drill holes range from –1. 0 to +5. 3% and from –7. 7 to +4. 6%, respectively. The oxygen and carbon iso-topic ratios at the mineralization level are extremely low, but there are exceptions as to carbon isotopes. The oxygen isotopic ratios of crystalline limestone may decrease by isotopic exchange reaction with a hydrothermal fluid, while the carbon isotopic ratios slightly change. Since the precipitated calcite from a hydrothermal fluid has low carbon isotopic ratio and various oxygen isotopic ratio depending on the formation temperature, the bulk sample of crystalline limestone containing the precipitated calcite has oxygen and carbon isotopic ratios of relatively low values accordingly. Thus the decrease mechanism for carbon isotopic ratio of crystalline limestone is different from that for oxygen isotopic ratio. Samples with the carbon isotopic ratio of –4 to –8% are considered to be crystallized from hydrothermal fluids. Since the oxygen and carbon isotopic ratios of crystalline limestone at the ore mineralization level are low, the ore bodies are considered to have formed by a prominent hydrothermal activity. Thus oxygen and carbon isotopic ratios of crystalline limestone can be used as an indicator of the related hydrothermal activity. The alteration such as chloritization is intense near fractures in the Sakonishi area, showing that the hydrothermal system is controlled by a fracture system. It is assumed that the decreased isotopic ratios indicate the high degree of reactivity with hydrothermal fluids, and the depleted zone in oxygen and carbon isotopes may correspond to the conduit of the hydrothermal fluids.  相似文献   

11.
Gold mineralisation in the Black Ridge gold deposit, Clermont, central Queensland is associated with extensive siderite alteration and is most concentrated along a locally sheared unconformity between the Proterozoic? Anakie Metamorphics and the overlying basal conglomerates of the Permian Blair Athol Coal Measures. The carbon and oxygen isotopic compositions of 49 siderite specimens from all rock units show a systematic variation spatially related to the unconformity. The δ 13C values of siderite decrease with depth from about 0 to ?19‰, while the siderite δ 18O values of siderite from the overlying conglomerates are lighter (average 20.5‰) than those from the underlying Anakie Metamorphics (average 23.5‰); both isotopes show the largest variations in the samples from the unconformity itself. The data are best interpreted as the result of the mixing of two isotopically and thermally distinct fluids. The upper, cooler fluid has a marine signature and was derived from the pore water of the conglomerate. The lower, geothermal fluid, which carried most of the gold, was not locally derived, but was probably modified in the upper part of the Anakie Metamorphics as a consequence f geothermal gradients imposed by instrusive rocks common throughout the Clermont area. Mixing of the two fluids along the unconformity led to gold solubility in the geothermal fluid dropping more than four orders of magnitude causing gold mineralisation there.  相似文献   

12.
The Valentine wollastonite skarn in the north-west Adirondack Mountains, New York, is a seven million ton deposit which resulted from channellized infiltration of H2O-rich, silica-bearing fluids. The wollastonite formed by reaction of these fluids with non-siliceous calcite marble. The skarn formed at the contact of the syenitic Diana Complex and was subsequently overprinted by Grenville-age granulite facies metamorphism and retrograde hydrothermal alteration during uplift. Calcite marbles adjacent to the deposit have generally high δ18O values (c. 21‰), typical of Grenville marbles which have not exchanged extensively with externally derived fluids. Carbon isotopic fractiona-tions between coexisting calcite and graphite in the marbles indicate equilibration at 675d? C, consistent with the conditions of regional metamorphism. Oxygen isotopic ratios from wollastonite skarn are lower than in the marbles and show a 14‰ variation (-1‰ to 13‰). Some isotopic heterogeneity is preserved from skarn formation, and some represents localized exchange with low-δ18O retrograde fluids. Detailed millimetre- to centimetre-scale isotopic profiles taken across skarn/marble contacts reveal steep δ18O gradients in the skarn, with values increasing towards the marble. The gradients reflect isotopic evolution of the fluid as it reacted with high δ18O calcite to form wollastonite. Calcite in the marble preserves high δ18O values to within <5 mm of the skarn contact. The preservation of high δ18O values in marbles at skarn contacts and the disequilibrium fractionation between wollastonite skarn and calcite marble across these contacts indicate that the marbles were not infiltrated with significant quantities of the fluid. Thus, the marbles were relatively impermeable during both the skarn formation and retrograde alteration. Skarn formation may have been episodic and fluid flow was either chaotic or dominantly parallel to lithological contacts. Although these steep isotope gradients resemble fluid infiltration fronts, they actually represent the sides of the major flow system. Because chromatographic infiltration models of mass transport require the assumption of pervasive fluid flow through a permeable rock, such models are not applicable to this hydrothermal system and, by extension, to many other metamorphic systems where low-permeability rocks restrict fluid migration pathways. Minimum time-integrated fluid fluxes have been calculated at the Valentine deposit using oxygen isotopic mass balance, reaction progress of fluid buffering reactions, and silica mass balance. All three approaches show that large volumes of fluid were necessary to produce the skarn, but silica mass balance calculations yield the largest minimum flux and are hence the most realistic.  相似文献   

13.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

14.
The Huilvshan gold deposit in the west Junggar (Xinjiang, China) is hosted in chloritized basalts, chlorite–siderite-altered basalts, and quartz–siderite rocks. Our study demonstrated that all these rocks were derived by alteration of basalts in a shear zone. The orebodies, consisting of quartz-sulfide veins and disseminated sulfides, formed in five stages: quartz–muscovite (I), disseminated sulfides (II), quartz–ankerite-sulfide (III), quartz–calcite-sulfide (IV), and quartz–calcite (V). Auriferous minerals are native gold in stage III and electrum in stage IV. During alteration of basalts in the shear zone, ore-forming elements were released from basalts to ore-forming fluid. Compared with fresh basalts, sulfide-bearing chloritized basalts contain much higher Sr, Ba, P, La, Ce, U, Mn, Ni, Zn, As, Ag, and Au contents. Phase analysis of the As–Cu–Fe–S–O system with the SUPCRT92 software package indicates that a decrease of the aH2S value, caused by the fluid–rock reactions and crystallization of sulfides, induced gold precipitation.  相似文献   

15.
Low grade hydrothermally metamorphosed ophiolitic basic rocks from E. Liguria (Italy), Pindos (Greece) and Troodos (Cyprus) are enriched in O18 relative to the oxygen isotope ratio of fresh basalt (6.0±0.5‰). The maximum observed δO18 value of +13.22‰ corresponds to a positive isotope shift of 7‰ Enrichments in Sr87 relative to Sr86 correlate with hydrothermal alteration. The δC13 values of secondary calcite from E. Liguria are positive, and fall in the range from +0.2% to +3.6‰ Since ophiolitic rocks are considered to be fragments of the oceanic crust and upper mantle, and since the secondary metamorphic assemblages were produced before mechanical emplacement, it is considered that the hydrothermal metamorphism which affected these rocks occurred in the sub-sea-floor environment. The isotope data are directly consistent with the hypothesis that the alteration was produced by interaction of the basaltic material with introduced sea water. Water: rock ratios were sufficiently large to produce the observed isotope shifts. In the Troodos ophiolite sequence δO18 values decrease steadily downwards and change to progressively larger depletions in the Sheeted Intrusive Complex. The trend of δO18 decrease correlates with the original direction of increasing temperature. The O18 depletions, which have also been observed for oceanic “greenstones” (Muehlenbachs and Clayton, 1972b), resulted from water/rock interaction at temperatures greater than the particular temperature range above which whole rock-water fractionations became less than the isotopic difference between fresh basalt and sea water. Since this isotope geochemistry indicates that the water responsible for hydrothermal metamorphism was of sea water origin, the data support the more general hypothesis that convection of sea water within the upper 4–5 kms of the oceanic crust is a massive and active process at oceanic ridges. This process may be completely or partially responsible for (a.i.), the local scatter and low mean value of the conductive heat flux measured near ridges, (a.ii), the transfer of considerable quantities of heat from spreading oceanic ridges, (b) hydrothermal metamorphism, metasomatism and mineralization of oceanic crust, (c), the production of metal enriched, relatively reduced brines during sea water/basalt interaction, d), the high degree of scatter and low mean value of the compressional wave velocities of oceanic basement layer 2 and (e), the low natural remanent magnetization (NRM) intensity of the lower part of layer 2 and upper part of layer 3 of oceanic crust.  相似文献   

16.
Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ∼80 °C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 °C. Calcite δ18O values range from ∼0 to ∼22‰ (SMOW) but most fall between 12 and 20‰. The highest Th and the lowest δ18O values are found in the older calcite. Calcite Th and δ18O values indicate that most calcite precipitated from water with δ18O values between −13 and −7‰, similar to modern meteoric waters.  相似文献   

17.
A semi-automatic, on-line method was developed to determine the δ13C and δ18O values of coexisting calcite and dolomite. An isotopic mass balance is used to calculate the compositions of dolomite after having measured that of calcite and of the “bulk” sample. The limit of validity of this method is established by performing isotopic measurements of artificial mixtures made of precisely weighted and isotopically-characterised dolomite and calcite. The accuracy and repeatability of the calculation of dolomite δ13C and δ18O are statistically determined with a Monte-Carlo procedure of error propagation. Stable isotope ratios are determined by using an automated MultiPrep™ system on-line with an isotope-ratio mass-spectrometer (IRMS). The reaction time and the temperature of reaction were optimised by comparing the results with the isotopic composition of known mixtures. The best results were obtained by phosphoric acid digestion after 20 min at 40 °C for calcite and 45 min at 90 °C for dolomite. This procedure allows an accurate determination of the isotopic ratios from small samples (300 μg). Application of this protocol to natural mixtures of calcite and dolomite requires the accurate determination of the relative abundance of calcite and dolomite by combining Mélières manocalcimetry (MMC) and X-ray diffractometry (XRD).  相似文献   

18.
In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The δ18O (SMOW) values of cave waters range from −6.3 to −3.5%.. The highest δ18O values occur at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5%. heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. δ13C (PDB) values of dissolved inorganic carbon (DIC) vary from −15.6 to −5.4%., with fast-drip waters having lower δ13C values (mostly −15.6 to −12%.) and higher DIC concentrations relative to pool and stalactite-drip water. The low δ13C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO2 derived from overlying C3-type vegetation and marine dolomite host rock.The δ18O (PDB) values of various types of present-day low-magnesium calcite (LMC) speleothems range from −6.5 to −4.3%. and δ13C values from −13 to −5.5%. and are not correlated with speleothem type. An analysis of δ18O values of present-day calcite rafts and pool waters shows that they form in oxygen isotope equilibrium. Similarly, the measured ranges of δ13C and δ18O values for all types of present-day speleothems are consistent with equilibrium deposition at cave temperatures. The δ13C–δ18O range of contemporary LMC thus reflects the variations in temperatures and isotopic compositions of the presentday cave waters. The 10%. variation in the δ13C values in waters can be modeled by a simple Rayleigh calculation of the carbon isotope fractionation accompanying CO2-degassing and carbonate precipitation. These variations may obscure the differences in the carbon isotopic composition of speleothems that could arise when vegetation cover changes from C3 to C4-type plants. This consideration emphasizes that it is necessary to characterize the full range of δ13C values associated with contemporaneous speleothems in order to clarify the effects of degassing from those due to differing vegetation types.Isotopic studies of a number of different types of fossil LMC speleothems show many of them to exhibit isotopic trends that are similar to those of present-day LMC, but others show both higher and lower δ18O ranges. In particular, the higher δ18O range has been shown by independent age-measurements to be associated with a period of drier conditions. The results of the study thus indicate that it is necessary to work on a well calibrated cave system in semiarid climates and that the fossil speleothem record should be obtained from different types of contemporaneous deposit in order to fully characterize the δ18O–δ13C range representative of any given climatic period.  相似文献   

19.
《Lithos》2007,93(1-2):89-106
The Salvezines Massif in northern French Pyrénées has undergone extensive albitization. The massif consists of gneisses and a leucogranite hosted in Paleozoic sediments (schists and carbonates). The leucogranite was emplaced at the end of the Hercynian orogeny. The granite underwent monazite fractionation during magmatic stages, which induced lowering of REE and Th contents in the most evolved rocks. Hydrothermal alteration during late magmatic stages is also identified through the development of a tetrad effect in the REE patterns of the granite and through the fractionation of ratios like Zr/Hf out of the CHARAC (CHarge RAdius Controlled) range. The granite underwent partial to complete sub-solidus albitization. Progressive metasomatic overprint induced metasomatic replacement of feldspars into albite and dissolution of quartz (episyenitization) together with new albite formation. Hydrothermal muscovite with a sheaf-like structure sometimes crystallised in albitites. Inherited muscovites from magmatic stage and newly formed muscovites from albitites have distinct chemical compositions with the latter being much more phengitic. The initial peraluminous chemistry of the leucogranite was lost during albitization and composition evolved towards a pure albite one (A/CNK = 1). Albitization induced gains in Na and Al, and losses in Si and K. Leaching of REE and U is also identified during albitization, as well as the non-CHARAC behaviour of some elements. δ18O values of quartz and muscovite in albitized granites are in the magmatic range (about 12 and 9.5‰, respectively). Feldspars acquired high δ18O values during albitization (up to 15‰). Muscovite grains from albitites have higher δ18O values than inherited ones and tend towards isotopic equilibrium with albite. The albitizing fluids have interacted with high-δ18O rocks (probably local carbonates) prior to alter granite. Muscovites inherited from magmatic stages display very characteristic disturbed 39Ar–40Ar age spectra with saddle-shapes when a muscovite associated with albitization provided a plateau age at 117.5 Ma for this alteration event. Albitization in the Salvezines Massif just preceded the regional talc/chlorite hydrothermal mineralization. Both events might then represent two outward signs of a huge hydrothermal system at the time of the rotation of the Iberian plate around Europe. The North Pyrenean Metamorphism is identified by 39Ar–40Ar analyses at ca. or younger than 100 Ma.  相似文献   

20.
Gold in the Sahinli and Tespih Dere intermediate sulfidation gold-base metal deposits in Western Turkey occurs in relatively deep epithermal quartz veins along with base metal minerals which have epithermal textures, including plumose quartz, vug infills, comb and cockade textures and matrix-supported milled breccias. The total sulfide content of the veins in the area is variable ranging from < 1% to 60% and is dominated by pyrite, galena, sphalerite and chalcopyrite. Sphalerite is Fe-poor (0.6 to 1.4 mol% FeS). Minor amounts of Ag-rich tetrahedrite are present. Primary hydrothermal alteration minerals include illite/muscovite, mixed-layer illite/smectite (11.6 Å) and clinochlore towards the east and, alunite, dickite/nacrite and pyrophyllite towards the west at Sahinli; major illite/muscovite and dickite occur at Tespih Dere and Sarioluk, respectively.Fluid inclusions in main-stage quartz at Sahinli are only liquid-rich, with homogenization temperatures ranging from 220 to 322 °C and the majority of Th values between 250 and 300 °C. Salinity ranges from 4.3 to 6.9 wt.% NaCl equiv. First ice-melting temperatures (Tmf) between ?24.5 and ?19.0 °C indicate that the fluids were dominated by NaCl  H2O during mineralization. The relatively higher average Th at the Tespih Dere deposit (295 °C) is attributed to a relatively deeper level of exposure.Calculated δ18O values indicate that ore-forming hydrothermal fluids in the study area had δ18OH2O ranging from + 1.1 to + 9.7‰ (average = 3.8‰), strongly 18O-enriched compared with present-day hydrothermal meteoric water in the area (δ18O = ?8.5‰). δD values of fluid inclusions in quartz range from ?58 to ?93‰ and δD values of clay minerals and alunite from ?40 to ?119‰. δD values from intermediate argillic alteration (average = ?68‰) in the study area are very similar to δD values of the present-day local geothermal system (average δD = ?54‰) whereas δD values from advanced-argillic alteration (average δD = ?33‰) are very different from the present-day local geothermal system.The δ34S values in samples from the Sahinli and Tespih Dere deposits average ?2.9‰ for pyrite; ?3.3‰ for chalcopyrite; ?5.4‰ for sphalerite and ?7.6‰ for galena. These data are consistent with derivation of the sulfur from either igneous rocks or possibly from local wallrock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号