首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The average local structure of a rhyolitic composition glass has been determined at 25°C using X-ray radial distribution analysis (RDA) and quasi-crystalline modelling and is best described as similar to that in a stuffed framework composed principally of six-membered rings of Si and Al tetrahedra (basically a stuffed tridymite-like model). Using this model it is possible to calculate a density (2.41 g/cm3) which compares well with the measured density (2.40 g/cm3); a structural model based on four-membered rings (an albite-like model) results in a substantially higher calculated density (2.60 g/cm3). We suggest that the rhyolite glass structural model is appropriate for rhyolitic melts, based on evidence from the recent literature. New viscosity data for an anhydrous rhyolite composition measured between 1200°C and 1500°C are presented and interpreted in terms of our proposed structural model and previous melt structure models for the major normative components of rhyolite. A mechanism for diffusion and viscous flow in framework silicate melts (including rhyolite composition) is proposed on the basis of recent molecular orbital calculations and molecular dynamics simulations of silicate and fluoride melts.  相似文献   

3.
4.
Rock textures commonly preserve a record of the near-surface crystallization history of volcanic rocks. Under conditions of simple cooling without convection or mixing, textures will reflect sample cooling rate, the temperature at which crystallization was initiated, and the distribution of mineral phase precipitation across the crystallization interval. Compilation of plagioclase size and number density data on natural (dike, sill and lava lake) and experimental samples suggests that (1) growth and nucleation rates of plagioclase in natural basaltic samples are a predictable function of cooling rate, and (2) the observed crystallization rate dependence on cooling rate is similar to that observed in experiments initiated at subliquidus temperatures. Comparison of natural and experimental samples thus suggests that most basalts crystallize under conditions of heterogeneous nucleation, with the number density of preexisting nucleii partially controlling textural responses to cooling rate changes. Time scales of crystallization and cooling in magmatic systems are intimately linked through a balance between heat removal from the system and heat evolved through crystallization. Evaluation of textural data in the context of recent numerical models of crystallization in simple (one- and two-component systems) provides new insight into regularities in the crystallization behavior of basaltic magmas. For example, the rate of change in crystal size (and number density, as dictated by mass balance) has been used as a measure of the relative importance of time scales of crystallization and cooling in numerical models of crystallizing systems. In natural samples, plagioclase size scales with the length scale of cooling such that a logarithmic plot of grain size as a function of normalized distance across the dike has a slope that appears approximately independent of dike width (solidification time). Comparison with available textural data for other phenocryst phases suggests that the same may be true for pyroxene and magnetite crystallization, with each phase having a characteristic slope probably controlled by the thermodynamic properties of the crystallizing phase. Measured crystal size distributions are unimodal and show maximum frequencies in the smaller size classes; distributions broaden and the grain size at peak frequency increases with increasing crystallization times (decreasing cooling rates). In contrast, partially crystallized Makaopuhi lava lake samples have crystal size distributions that decrease exponentially with increasing crystal size. Measured size distributions in dikes can be explained by late stage modification of Makaopuhi-type distributions through loss of small crystals, possibly the consequence of growth without nucleation. Finally, this compilation of the textural response of basaltic magmas to changes in cooling rate suggests that empirical calibrations of crystallization rate dependence on cooling rate from natural samples provide a reasonable model for plagioclase crystallization in near-surface basaltic systems. Predicted growth rates will be slow and relatively constant (10-10–10-11 cm/s) for crystallization times expected in most shallow volcanic systems (<1000 years).  相似文献   

5.
A series of crystallization experiments have been performed on synthetic glasses matching the composition of a melt pocket found in Allan Hills (ALH) 77005 in order to evaluate the heterogeneous nucleation potential of the melt and the effect of oxygen fugacity on crystallization. The starting temperature of the experiments varied from superliquidus, liquidus and subliquidus temperatures. Each run was then cooled at rates of 10, 500 and 1000 °C/h at FMQ. The results of this study constrain the heating and cooling regime for a microporphyritic melt pocket. Within the melt pocket, strong thermal gradients existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites resulting in gradational textures of olivine and chromite. Skeletal olivine in the melt pocket center crystallized from a melt containing few nuclei cooled at a fast rate. Nearer to the melt pocket margin elongate skeletal shapes progress to hopper and equant euhedral, reflecting an increase in nuclei in the melt at the initiation of crystallization and growth at low degrees of supercooling. Cooling from post-shock temperatures took place on the order of minutes.An additional series of experiments were conducted for a melt temperature of 1510 °C and a cooling rate of 500 °C/h at the FMQ buffer, as well as 1 and 2 log units above and below FMQ. Variation in chromite stability in these experiments is reflected in crystal shapes and composition, and place constraints on the oxygen fugacity of crystallization of the melt pocket. We conclude that the oxygen fugacity of the melt pocket was set by the Fe3+/Fe2+ ratio imparted by melting of the host rock, rather than external factors such as incorporation of CO2-rich Martian atmosphere, or melting and injection of oxidized surface (e.g., regolith) material.Comparison with previous crystallization experiments on melt pockets in Martian basalts indicate that the predominance of dendritic crystal shapes reflects the likelihood that those melt pockets with lower liquidus temperatures will be more completely melted, destroying most or all nuclei in the melt. In this case, crystal growth takes place at high degrees of supercooling, yielding dendritic shapes. It appears as though the melting process is just as important as cooling rate in determining the final texture of the melt pocket, as this process controls elimination or preservation of nuclei at the onset of cooling and crystallization.  相似文献   

6.
The anionic structure of aluminosilicate melts of intermediate degree of polymerization (NBO/T = 0.5) and with along the composition join (LS4-LA4) has been examined in-situ to ˜1480 °C, and compared with recent data for melts along the analog composition join and with less polymerized melts along the join and O_5. With , the anionic equilibrium, (1) , adequately describes the structure. With , a second expression, (2) , is required because an additional structural unit, Q1, is stabilized in the melts. The enthalpy, , of reaction (1) increases from − 36 ±4 kJ/mol in the absence of aluminum to 34± 5 kJ/mol at and 64 ± 4 kJ/mol at Al/(Al + Si) = 0.45. Similar trends are reported for other alkali aluminosilicate melts. Least-squares fitting of abundance of structural units as a function of temperature and bulk composition has been conducted. The unit abundance is dominantly a function of temperature, Al/(Al +Si), and bulk melt polymerization. Configurational entropy and heat capacity of mixing of melts above their glass transition temperatures have been calculated with the aid of the least-squares fitted equations. The values of these parameters indicate that as the ionization potential of the metal cations increases, configurational heat capacity of alkali aluminosilicate melts becomes temperature dependent. As a result, transport properties (viscosity, diffusivity, and conductivity) of such melts will not show Arrhenian behavior even in the high-temperature range. Further, discontinuous changes in entropy and heat capacity of mixing results from temperature-induced changes in types of structural units in the melts. Such discontinuous changes would also be reflected in discontinuous changes of temperature-dependent transport properties. Received: 26 September 1996 / Accepted: 18 October 1996  相似文献   

7.
Thermal diffusivity (D) was measured using laser-flash analysis (LFA) from oriented single-crystal albite and glasses near LiAlSi3O8, NaAlSi3O8, CaAl2Si2O8, LiAlSi2O6 and CaMgSi2O6 compositions. Viscosity measurements of the supercooled liquids, over 2.6 × 108 to 8.9 × 1012 Pa s, confirm strongly non-Arrhenian behavior for CaAl2Si2O8, and CaMgSi2O6, and near-Arrhenian behavior for the others. As T increases, D glass decreases, approaching a constant near 1,000 K. Upon crossing the glass transition, D decreases rapidly. For feldspars, D for the melt is ~15% below D of the bulk crystal, whereas for pyroxenes, this difference is ~40%. Thermal conductivity (k lat = ρC P D) of crystals decreases with increasing T, but k lat of glasses increases with T because heat capacity (C P ) increases with T more strongly than density (ρ) and D decrease. For feldspars, k lat for the melt is ~10% below that of the bulk crystal or glass, whereas this decrease for pyroxene is ~50%. Therefore, melting substantially impedes heat transport, providing positive thermal feedback that could promote further melting.  相似文献   

8.
Ca- and Na-rich pyroxene-amphibole compositions and textures from a range of felsic alkaline rocks have been studied in detail. The data indicate that in a single sample, when amphibole crystallizes, a gap is observed between Ca- and Na-rich pyroxene compositions. This break in composition is analogous to Aoki's (1964) immiscibility gap between Ca-and Na-rich pyroxenes and can be overlooked when considering pyroxene compositions from a suite of rocks. The role of volatiles in governing the stability and composition of amphiboles is discussed. The presence of late crystallizing Na-rich pyroxene is related to the development of peralkinity in the late-stage melts.On extrusion, many alkaline rocks lose their volatiles and amphibole is absent. In these rocks complete zoning from Ca-rich to Na-rich pyroxene compositions are observed within the one sample.  相似文献   

9.
Joint behavior of Pt, Pd, Au, As, Bi, Te, and Sn upon fractional crystallization was studied in a melt of cubanite composition with the following admixtures (mol %): Fe, 33.20; Cu, 16.55; S, 50.03; Pt, 0.03; Pd, 0.02; Au, 0.02; As, 0.02; Bi, 0.03; Te, 0.02; Sn, 0.08. The crystallized sample consisted of three zones: (I) a pyrrhotite solid solution POSS; (II) an isocubanite ICB; (III) a multiphase mixture. The behavior of admixtures was studied in the first and second zones. It was shown that pyrrhotite did not contain admixtures of noble metals and accessory elements, whereas Sn was dissolved in cubanite. Other admixtures occurred in the second zone as multiphase inclusions. PdBiхTe1–х, PtBiS3–δ, CuPtBiS3, Bi2S3–х, Au, Pt(As,S)2, (Pt,Pd)S, (Pt,Pd)(Bi,Te)2–x, and PdBi2 were the most abundant phases.  相似文献   

10.
Compositional and textural relations of coexisting augite and pigeonite in a tholeiitic dolerite in Semi, northern Japan have been analysed with the electron probe microanalyser. Two different crystallization trends of augite have been recognized. In the first case, augite varies in composition from Ca37 Mg41 Fe22 to Ca35 Mg32 Fe33 with nearly constant Ca/Ca +Mg+Fe ratio, whereas in the second case, augite varies from Ca36Mg40Fe24 to Ca28Mg35Fe37 with a considerable decrease of Ca/Ca+Mg+Fe ratio. The compositional trend of augite in the first case may be explained by cotectic crystallization of augite and pigeonite, and that in the second case may be explained by metastable crystallization of subcalcic augite due to undercooling of magma. Such metastable crystallization may have resulted in local heterogeneity of magma.  相似文献   

11.
In order to investigate the possibility that chondrules may have had an independent existence in space, we have searched for unusual nuclear track densities in chondrules and studied the compositions of chondrule rims on chondrules from thirteen unequilibrated ordinary chondrites. Our search for unusual radiation features has been negative. Observed track densities can be explained in terms of cosmic ray exposure ages of the respective meteorites. Fine-grained rims that surround chondrules in unequilibrated ordinary chondrites are heterogeneous in composition consisting of varying proportions of iron sulfide and a poorly characterized silicate phase. The latter phase or phases are roughly chondritic in composition. Fine-grained rims of the kind seen in primitive type 3 ordinary chondrites are absent in higher petrographie grades; more crystalline, coarse-grained and lacy sulfide rims, however, are observed. Our observations can be explained by chondrules having had an independent existence in space during which they acquired rims either by condensation on their surfaces or by accretion of fine particles. However, accumulation of rims while chondrules resided on a meteorite parent body cannot be ruled out at this time. In any case, we do not propose that the chondrules themselves formed by condensation. Absence of a track record of space exposure of chondrules could be due to shielding by matter in space if, for example, chondrules were present in space in clouds made of dust, gas and/or chondrules.  相似文献   

12.
13.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

14.
The distribution of Ba, Rb and Sr during crystallization of a granitic melt is examined in a number of theoretical models. The modes of crystallization considered are perfect fractional crystallization, perfect equilibrium crystallization, and an intermediate mode, incremental equilibrium crystallization. The effect of the degree of separation of cumulus minerals from melt during crystallization is also considered. Perfect fractional and incremental equilibrium crystallization (with small increments) are broadly similar, but differ in the final stages of crystallization in that the latter mode defines a finite trace element composition for the last solid. The effect of intercumulus melt in both modes of crystallization imparts a ‘liquid’ character to the solids, and suppresses the degree of enrichment of Rb and depletion of Ba and Sr in late solids and melts.Examination of trace element data for the Acid Phase of the Bushveld Igneous Complex in the light of these models suggests that these granites represent a suite of cumulate rocks, containing relatively large amounts of intercumulus melt.  相似文献   

15.
Low-Ca pyroxenes play an important role in mantle melting, melt-rock reaction, and magma differentiation processes. In order to better understand REE fractionation during adiabatic mantle melting and pyroxenite-derived melt and peridotite interaction, we developed a parameterized model for REE partitioning between low-Ca pyroxene and basaltic melts. Our parameterization is based on the lattice strain model and a compilation of published experimental data, supplemented by a new set of trace element partitioning experiments for low-Ca pyroxenes produced by pyroxenite-derived melt and peridotite interaction. To test the validity of the assumptions and simplifications used in the model development, we compared model-derived partition coefficients with measured partition coefficients for REE between orthopyroxene and clinopyroxene in well-equilibrated peridotite xenoliths. REE partition coefficients in low-Ca pyroxene correlate negatively with temperature and positively with both calcium content on the M2 site and aluminum content on the tetrahedral site of pyroxene. The strong competing effect between temperature and major element compositions of low-Ca pyroxene results in very small variations in REE partition coefficients in orthopyroxene during adiabatic mantle melting when diopside is in the residue. REE partition coefficients in orthopyroxene can be treated as constants at a given mantle potential temperature during decompression melting of lherzolite and diopside-bearing harzburgite. In the absence of diopside, partition coefficients of light REE in orthopyroxene vary significantly, and such variations should be taken into consideration in geochemical modeling of REE fractionation in clinopyroxene-free harzburgite. Application of the parameterized model to low-Ca pyroxenes produced by reaction between pyroxenite-derived melt and peridotite revealed large variations in the calculated REE partition coefficients in the low-Ca pyroxenes. Temperature and composition of starting pyroxenite must be considered when selecting REE partition coefficients for pyroxenite-derived melt and peridotite interaction.  相似文献   

16.
Intergrowth of clinopyroxenes (augite, A) and pyroxenoids (Fe-rhodonite and pyroxferroite, Pxo) was observed by transmission electron microscopy. The following orientation relationship was found: (001)Pxo is parallel to \((1\mathop {\bar 1}\limits^ + \bar 1)_{\text{A}}\) and \([1\bar 10]_{Pxo}\) is parallel to [011]A. This relationship can be explained by similarities of the structures of clinopyroxenes and pyroxenoids. It contradicts a suggestion based on structural arguments of Koto et al. (1976). Chain periodicity faults parallel to \((1\mathop {\bar 1}\limits^ + \bar 1)\) are also observed in pure clinopyroxenes.  相似文献   

17.
18.
The Zhoukoudian pluton in the North China craton is a circular granodiorite intrusion containing porphyritic diorite dykes (PDDs), porphyritic granodiorite dykes (PGDs) and abundant mafic microgranular enclaves (MMEs), which provide an excellent opportunity to study fractional crystallization and magma mixing. The PDDs and PGDs are located in the western part of the pluton with the PDDs intruded by the PGDs. The dykes have similar mineral assemblages although plagioclase in the PDDs has higher anorthite content than the PGDs. Linear relationships between the SiO2 and most major and trace element contents, as well as a positive trend of initial 87Sr/86Sr ratios and a negative trend of epsilon Nd values with increasing SiO2 contents for the dykes suggest that both types were formed by assimilation and fractional crystallization of a common parental magma. Major oxide mass balance and trace element Rayleigh fractionation modeling points to early separation of garnet (11 %), clinopyroxene (27 %), orthopyroxene (16 %), plagioclase (25 %), biotite (19 %), and apatite (2 %) and late fractionation of hornblende (25 %), plagioclase (46 %), biotite (25 %), apatite (1 %), and magnetite (3 %). Most MMEs occur within the transitional granodiorite of the Zhoukoudian pluton. Zoned MMEs, dyke-like MME swarms, local presence of concave margins, veins and enclaves of host granodiorite within some MMEs, and several MMEs surrounded by the biotite-rich granodiorite support their formation by multiple magma mixing events, which finally resulted in different whole-rock major oxides and compatible elements, but homogeneous mineral major oxides (except zoned plagioclase), whole-rock incompatible elements and Sr-Nd isotopes between the MMEs and their host granodiorite. We suggest that multiple magma mixing events might also cause complexly zoned plagioclase in the Zhoukoudian pluton. Relative calcic, irregular or patchy cores and dusty zoned mantles from the zoned plagioclase crystals and their relatively low anorthite content indicate multiple mixing events between mafic/intermediate and felsic magmas. The mafic/intermediate end-members could be represented by the diabase dykes and the PDDs. Therefore, the dykes and MMEs in the Zhoukoudian pluton are genetically linked.  相似文献   

19.
The effect of pressure and composition on the viscosity of both anhydrous and hydrous andesitic melts was studied in the viscosity range of 108 to 1011.5 Pa · s using parallel plate viscometry. The pressure dependence of the viscosity of three synthetic, iron-free liquids (andesite analogs) containing 0.0, 1.06, and 1.96 wt.% H2O, respectively, was measured from 100 to 300 MPa using a high-P-T viscometer. These results, combined with those from Richet et al. (1996), indicate that viscosities of anhydrous andesitic melts are independent of pressure, whereas viscosities of hydrous melts slightly increase with increasing pressure. This trend is consistent with an increased degree of depolymerization in the hydrous melts. Compositional effects on the viscosity were studied by comparing iron-free and iron-bearing compositions with similar degrees of depolymerization. During experiments at atmospheric and at elevated pressures (100 to 300 MPa), the viscosity of iron-bearing anhydrous melts preequilibrated in air continuously increased, and the samples became paramagnetic. Analysis of these samples by transmission electron microscopy showed a homogeneous distribution of crystals (probably magnetite) with sizes in the range of 10 to 50 nm. No significant difference in the volume fractions of crystals was found in samples after annealing for 170 to 830 min at temperatures ranging from 970 to 1122 K. An iron-bearing andesite containing 1.88 wt.% H2O, which was synthesized at intrinsic fO2 conditions in an internally heated pressure vessel, showed a similar viscosity behavior as the anhydrous melts. The continuous increase in viscosity at a constant temperature is attributed to changes of the melt structure due to exsolution of iron-rich phases. By extrapolating the time evolution of viscosity down to the time at which the run temperature was reached, for both the anhydrous (at 1055 K) and the hydrous (at 860 K) iron-bearing andesite, the viscosity is 0.7 log units lower than predicted by the model of Richet et al. (1996). This may be explained by differences in structural properties of Fe2+ and Fe3+ and their substitutes Mg2+, Ca2+, and Al3+, which were used in the analogue composition.The effect of iron redox state on the viscosity of anhydrous, synthetic andesite melts was studied at ambient pressure using a dilatometer. Reduced iron-bearing samples were produced by annealing melts in graphite crucibles in an Ar/CO atmosphere for different run times. In contrast to the oxidized sample, no variation of viscosity with time and no exsolution of iron oxide phases was observed for the most reduced glasses. This indicates that trivalent iron promotes the exsolution of iron oxide in supercooled melts. With decreasing Fe3+/ΣFe ratio from 0.58 to 0.34, the viscosity decreases by ∼1.6 log units in the investigated temperature range between 964 and 1098 K. A more reduced glass with Fe3+/ΣFe = 0.21 showed no additional decrease in viscosity. Our conclusion from these results is that the viscosity of natural melts may be largely overestimated when using data obtained from samples synthesized in air.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号