首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mn distribution in Panama Basin area sediments and interstitial waters is discussed. Striking surficial Mn enrichments produced by a well-known diagenetic recycling process characterize the sediments of the region. Thermodynamic solubility calculations indicate that in at least one core interstitial waters approach saturation with respect to MnCO3. A mixed carbonate phase of composition (Mn48 Ca47 Mg5)CO3 was recovered from an ash band in the same core. The association of this material with the coarse volcaniclastic debris is thought to result from facile manganous carbonate precipitation in sediment horizons of coarser mean grain size. Since sulphate reduction in the upper two metres of Panama Basin sediments is fairly minor, little increase in alkalinity is observed, and it is postulated that significant production of carbonate alkalinity is not a prerequisite for manganous carbonate generation in hemipelagic sediments. A more important factor appears to be the availability of Mn oxides for solution during early diagenesis. Stable C isotopic analyses indicate that little C of organic origin is used in the precipitation reaction in either Panama Basin or Loch Fyne (Scotland) sediments.  相似文献   

2.
In this study, the equilibrium partitioning approach was used to derive the sediment quality criteria (SQC) recommended values of eight heavy metals (Cr, Cu, Pb, Zn, Cd, As, Fe and Mn) for surface sediments taken from Lake Chaohu. The concentration of the heavy metal in the interstitial water (C IW) was determined by the film diffusion gradient technology to obtain the metal partitioning coefficient (K P). Moreover, the metal fractionation of the sediments were analyzed using European Community Bureau of Reference sequential extraction procedure and the partitioning of bound phases including total organic carbon (TOC), grain sizes and acid volatile sulfide (AVS) were also investigated. The values of K P for Cr, Cu, Pb, Zn, Cd, As, Fe and Mn were 3,924.84, 2,276.23, 17,811.30, 738.35, 10,986.54, 718.74, 5,875.34 and 341.20 L/kg, respectively. Sediment quality criteria were normalized on the basis of fine materials, AVS, TOC and the residual metals (M R). SQC values for Cr, Cu, Pb, Zn, Cd, As, Fe and Mn based on Chinese surface water quality criteria were derived with the values of 78.53, 56.95, 362.93, 74.68, 23.90, 71.84, 3,546.53 and 68.42 mg/kg, respectively. The suggested SQC values in this study were compared SQCs from different countries and areas, which indicated SQCs from different countries or regions appeared to have great discrepancies attributed to the difference of the physical and chemical characteristics of sediments.  相似文献   

3.
 Retention ponds have been dug along some of the motorways in France to minimize environmental pollution by keeping pollutants from spreading over the surrounding area. In the current work, eight core samples were collected from the bottom of a retention pond located along the A-71 motorway in Sologne to study the pollution of sediment by heavy metals and their diagenetic behaviour. The vertical concentration profiles of metals (Pb, Zn, Cd, Fe and Mn) in sediment as well as in interstitial water were determined. Especially in the case of the sediment, a sequential extraction method was employed to investigate how the movement of each metal is associated with the other metals and with other solid phases such as organic matter. In addition, to investigate the relative mobility of the metals, the distribution coefficients (KD) were also determined. The concentrations of the metals were always found to be highest in the topmost layer of sediment. This so-called surface enrichment is caused by a substantial increase of the non-detrital fraction of these metals at the sediment surface. For instance, the accumulation of Pb and Zn is associated with the increase in the "fraction II" in the sequential extraction. The accumulation of Cd at the surface (0–2 cm) is partly due to the liberation of Cd from the particles during early diagenesis. However, the major factor contributing to the accumulation of Cd at the sediment surface is attributed to the dissolution of Cd from polluted roadside soil during the periods of rainstorms and its subsequent redeposition on the sediment surface after being carried to the retention pond. KD values for Zn and Cd were found to decrease with depth, while KD values for Pb increased. Based on the KD values, the relative mobilities of the studied metals were determined to be as follows: Mn>Zn>Cd>Pb, for the upper layer, and Mn>Cd>Zn>Pb, for the layers below. Received: 28 October 1996 / Accepted: 21 November 1996  相似文献   

4.
Trace metals were analyzed in water and sediment samples from Barapukuria coal mine area of Bangladesh in order to evaluate their mobility and possible environment consequences. Cadmium is the most mobile element with an average partition coefficient (log K d ) of 2.95 L/kg, while V is the least mobile element with a mean log K d of 5.50 L/kg, and their order of increasing mobility is: V < As < Pb < Fe < Cr < Se < Mn < Ni < Zn < Cu < Ba < Sr < Cd. Contents of organic carbon in sediment samples shows strong positive correlations with most trace metals as revealed by the multivariate geostatistical analysis. The overall variation in concentration is mainly attributed to the discharge of effluents originating from the coal mining activities around the study area. Compared to their background, Ni and Cu are the most enriched while significant enrichment of As, Mn, Ba, Sr, Cr, and Pb is also observed in the sediments. Geoaccumulation indices (I geo ) suggest sediments are moderately to heavily polluted with respect to Ni and Cu. The metal pollution index (MPI) varied from 91.91 to 212.01 and the highest value is found at site CM03 that is close to discharge point. The sediment quality guideline index (SQG-I Intervention ) values (0.56–1.52) suggest that the sediments at the study area have moderate to high ecotoxicological risk.  相似文献   

5.
The particle-solution (Kd) relationships of Pu(III,IV) in the Esk Estuary are investigated, using new experimental data together with a synthesis of our earlier work. Adsorption of 236Pu(IV) by a suspension of intertidal mud (40 mg L−1) from the Esk Estuary was determined after 1 h, as a function of salinity and pH, in a series of controlled laboratory experiments. Desorption of 239, 240Pu(III,IV) from this environmentally contaminated sediment was determined concurrently. The short term (i.e., within a tidal cycle) non-conservative behaviour of Pu(III,IV) in both the laboratory experiments and the estuary appears to be dominated by a rapid, reversible surface complexation reaction, although only a small fraction (<5%) of the 239,240Pu(III,IV) activity of the environmentally contaminated sediment is able to participate in the reaction. The existence of this exchangeable or labile fraction can explain the apparent dependence of Pu(III,IV) Kd on sediment concentration. Thus, a single Kd value is able to describe both the observed adsorption and desorption behaviour and the effect of sediment concentration, when desorption is expressed with respect to the labile 239,240Pu(III,IV) fraction. For example, in R. Esk water, the adsorption of 236Pu(III,IV) and the desorption of 236,240Pu(III,IV), over a two order of magnitude concentration range of unwashed Esk Estuary sediment, can be accounted for by a single Kd of ∼3 × 103 L kg−1. The Kd for the labile Pu(III,IV) fraction varies mainly as a function of salinity. pH is not an important factor over the pH range 4–9, although H+ ion exchange does occur, probably through a similar surface complexation reaction. The kinetic and equilibrium characteristics of the Pu (III,IV) sorption behaviour conform to the pattern observed by Jannasch et al. (1988) and other workers for a range of trace elements.  相似文献   

6.
Below the zone where manganese is remobilized as Mn2+(aq), reductively cleaned foraminifera in deep sea sediments have much higher MnCa than those in core tops and sediment traps. MnCa ranges from less than 20 × 10?6 in and above the MnO2 maximum to as high as 700 × 10?6 in reducing Panama Basin sediments. The most plausible explanation for this enrichment is that the tests are coated with Mn carbonate overgrowths. These coatings can account for a significant proportion of the Mn in reduced deep-sea sediments. Uptake of manganous ion by carbonate may explain the absence of Mn nodules in areas of high carbonate accumulation. Extreme degrees of overgrowth can alter foram trace element values, but this artifact can be avoided by avoiding foraminifera with high Mn/Ca.  相似文献   

7.
The adsorption of thirteen trace metals from seawater was studied on interfacial sediment from MANOP site H. The adsorption data indicate a long (~20 day) equilibration time for most metals, an increase in adsorption with an increase in pH and particle concentration, a dependence of adsorption on total metal concentration at high adsorption densities, and a lack of correlation between metal binding ability and metal hydrolysis in solution.Apparent equilibrium binding constants normalized to the total number of available sites on the solid were determined for metal binding with the interfacial sediment. The binding constants indicate that the affinity sequence for metal interactions with the interfacial sediment is: Pb > Fe > Sn ? Co≈ Mn > Cu > Be > Sc ? Zn > Ni > Cd ? Ba > Cs at pH 7.82 in seawater.A comparison of the binding constants for suspended particles, interfacial sediment, and surface sediment indicate that the composition of particles influences the binding ability of the particles. Biogenic particles tend to bind most metals more strongly than lithogenic or authigenic particles.Based on limited data, there is a strong positive correlation between the measured binding constants and the observed partitioning of metals between sediment and seawater.  相似文献   

8.
Sorption isotherms, time-dependent adsorption and surface complexation modeling studies were used to investigate the post-depositional mobility of three of the platinum group-elements (Pd, Rh, and Pt) in semi-arid soil and sediment samples with varying surface properties. The acidity constants (Log Ka1 and Log Ka2), optimized from batch titration data, ranged from 4.69 to 5.34 for Log Ka1 and from −6.51 to −7.61 for Log Ka2, suggesting the occurrence of both protonation and deprotonation reactions on the solid surfaces. Partition coefficients and removal rates of the metals had a general trend of Pd > Pt > Rh. The sediment sample, with the highest clay content and exchangeable cation concentrations, also had the highest affinity for the metals. The times required for sediment to adsorb 63% of the metals were 2.63 h, 4.08 h and 10.64 h for Pd, Pt and Rh, respectively. The FITEQL program successfully optimized the conditional binding constants of the metals on the solids from batch adsorption data. The constants decreased in the order of Pd > Rh > Pt, which was consistent with the observed high affinity of the solids for Pd. The modeling results also showed that aqueous Pd was the least sensitive to pH followed by Rh and Pt. However, metal adsorption below the points of zero net proton charges (ca. pH 6.7) is attributable to the involvement of permanent negatively charged binding sites in the adsorption process. Notably, partition coefficients, removal rates and conditional binding constants all showed a high affinity of Pd for the solids. A similarity between the model outputs and the batch adsorption data indicates the suitability of the model for describing the mobility and retention of the three metals in semi-arid soils and sediments.  相似文献   

9.
《Applied Geochemistry》2004,19(10):1643-1653
Reactive solute transport simulations in groundwater require a large number of parameters to describe hydrologic and chemical reaction processes. Appropriate methods for determining chemical reaction parameters required for reactive solute transport simulations are still under investigation. This work compares U(VI) distribution coefficients (i.e. KD values) measured under field conditions with KD values calculated from a surface complexation model developed in the laboratory. Field studies were conducted in an alluvial aquifer at a former U mill tailings site near the town of Naturita, CO, USA, by suspending approximately 10 g samples of Naturita aquifer background sediments (NABS) in 17-5.1-cm diameter wells for periods of 3 to 15 months. Adsorbed U(VI) on these samples was determined by extraction with a pH 9.45 NaHCO3/Na2CO3 solution. In wells where the chemical conditions in groundwater were nearly constant, adsorbed U concentrations for samples taken after 3 months of exposure to groundwater were indistinguishable from samples taken after 15 months. Measured in situ KD values calculated from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL/g and the KD values decreased with increasing groundwater alkalinity, consistent with increased formation of soluble U(VI)-carbonate complexes at higher alkalinities. The in situ KD values were compared with KD values predicted from a surface complexation model (SCM) developed under laboratory conditions in a separate study. A good agreement between the predicted and measured in situ KD values was observed. The demonstration that the laboratory derived SCM can predict U(VI) adsorption in the field provides a critical independent test of a submodel used in a reactive transport model.  相似文献   

10.
《Applied Geochemistry》2003,18(11):1723-1731
The mobility and bioavailability of heavy metals depends on the metal retention capacity of soil and also on the geochemical phases with which metals are associated. Laboratory batch experiments were carried out to study the sorption and distribution of Cd, Ni and Pb in 3 soils differing in their physicochemical properties from India: Oxyaquic Haplustalf (SL1), Typic Haplustalf (SL2) and Typic Haplustert (SL3). The heavy metal adsorption was studied by isotherms and the distribution coefficient (KD) for each metal was obtained from the linear regressions of the concentration of metal remaining in equilibrium solution and the amount adsorbed. In general, the sorption capacity for all the metals decreased in the order: SL3>SL2>SL1. Among metals, the sorption capacity in all the soils decreased in the order: Pb>>Ni>Cd. Distribution of sorbed metals at various equilibrating concentrations was studied by sequential extraction. Results showed significant differences in the distribution of metals in these soils. At higher additions (such as 200 μM l−1) most of the metals were extracted in their more mobile fractions, exchangeable and/or inorganic in contrast to their original partitioning in soils, where they were preferentially associated with the less mobile residual fraction. Largest percentages of metals extracted in the exchangeable fraction corresponded to those soil–metal systems with smaller KD values, e.g. Cd, Ni and Pb in SL1 and Cd and Ni in SL2. In neutral and alkaline soils (SL2, pH=7.1, and SL3, pH=8.6) Pb was predominantly extracted from the inorganic fractions and this corresponded to higher KD values for Pb in these soils. The predominance of metals associated with the exchangeable fraction together with low KD values indicates higher mobility of metals retained in the acidic soil (SL1, pH=5.2) compared with the others.  相似文献   

11.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

12.
Eighty-six surface sediments collected from the northwestern continental shelf of the South China Sea (SCS) were analyzed for grain size distribution, calcium carbonate, organic carbon, and major and trace element compositions to investigate sediment provenance and factors controlling their geochemical composition. Sediments from the eastern continental shelf of Hainan Island have higher sand and lower clay content, while the samples from the nearshore Hainan Island have higher contents of gravel and clay. Calcium carbonate contents in samples show a positive correlation with water depth in northwestern shelf of SCS, suggesting that it is related to biological factors. However, the nearshore sediments have higher contents of organic carbon compared to those of the outer shelf, possibly suggesting that the terrigenous organic matter usually deposited in nearshore environments such as bays and estuaries. Compared with the upper continental crust, the samples have relatively lower contents of SiO2 and Al2O3, higher than those of the Pearl and Red river sediments. The low contents of K2O and Na2O in sediments from the northwestern continental shelf are consistent with intense chemical weathering in the river basin due to the seasonally hot and humid climate regime. The sediments mainly consist of three components, including the gravel fraction composed of calcareous debris, the sand fraction composed of quartz, and the silt and clay fractions mainly composed of clay minerals. The content of each component depends on grain size, sediment source, biogenesis, and hydrodynamic conditions, which finally controls the chemical composition of the sediments. The distributions of Co/Al2O3, Cr/Al2O3, and Zr/Sc ratios for sediments in the northwestern continental shelf suggest that source rocks are mainly composed of felsic rocks rather than mafic rocks. There is a distinct difference in sediment source between eastern and western shelf sediments; the eastern shelf sediments are characterized by high Zr/Sc ratios mainly derived from the Pearl River, while the western shelf sediments have relatively low values of Zr/Sc indicating a main contribution possibly sourced from the Red River Basin. Terrigenous materials from Hainan Island usually influence the geochemistry of sediments deposited in the nearshore area.  相似文献   

13.
《Applied Geochemistry》1998,13(2):269-280
A slow flow, plug-through reactor was developed for measuring equilibrium and kinetic parameters of biogeochemical reactions on intact sections of sediment cores. The experimental approach was designed to preserve the structural, geochemical and microbiological integrity of the sediment sections and, hence, retrieve reaction parameters that apply to in-situ conditions.Inert tracer breakthrough experiments were performed on a variety of unconsolidated surface sediments from lacustrine, estuarine and marine depositional environments. The sediments studied cover wide ranges of composition, porosity (46–83%) and mean grain size (10−4−10−2 cm). Longitudinal dispersion coefficients were determined from the breakthrough curves of Br. The curves were also used to check for early breakthrough or trailing, that is, features indicative of non-ideal flow conditions. Sediment plugs that exhibited these features were eliminated from further experiments.Dimensionless equilibrium adsorption coefficients (K) of NH4+, were calculated from measured retardation times between the breakthrough of NH4+ and Br. The values of K at 5°C vary between 0.3 and 2.3, with the highest value obtained in a fine-grained marine sediment, the lowest in a coarse-grained lake sediment. The values for the marine and estuarine sediments agree with values reported in the literature. The dependencies of K on ionic strength (range 0.2-0.7m) and temperature (range 5–25°C) in an estuarine sediment confirm that the main sorption mechanism for NH4+ is ion exchange.The reactor was used in recirculation mode to measure steady-state rates of dissimilatory SO42− reduction in a salt-marsh sediment. Recirculation homogenizes solute concentrations within the reactor, hence facilitating the derivation of reaction rate expressions that depend on solution composition. The rate of microbial S04 reduction was found to be nearly independent of the dissolved SO42− concentration in the range of 2.2−1 mM. Fitting of the experimental rates to a Monod relationship resulted in a maximum estimate of the half-saturation concentration, Ks, of 240 μM. This value is comparable to those reported for a pure culture of SO42−-reducing bacteria, but is significantly smaller than the only other Ks value reported in the literature for SO42− utilization in a natural marine sediment.  相似文献   

14.
The partitioning of radioactive trace elements between seawater and particulate matter from surface sediments and sediment traps was investigated in laboratory experiments. For the elements Na, Zn, Se, Sr, Cd, Sn, Sb, Cs, Ba, Hg, Th and Pa (group I) constant distribution coefficients (Kd) were found after a few days of equilibration, whereas the elements Be, Mn, Co and Fe (group II) showed an increasing Kd over the whole time of observation of 108 days. The time dependence of Kd is described by an adsorption-desorption equilibrium (group I elements), followed by a lattice transport reaction step (group II elements). The reaction rate constants are compared to Mn oxidation rates and to adsorption rate constants derived from in situ measurements of the UTh disequilibrium as available from literature.  相似文献   

15.
The early diagenetic environment of intertidal sandy sediments (sands) and muddy sediments (muds) is described and compared from two cores taken from an unpolluted part of the Manukau Harbour, New Zealand. Extraction techniques characterized the form of the trace elements (Fe, Mn, S, C, Pb, Zn, Cu) at different depths in the sediment. Dissolved forms of Fe, Mn, and S were measured in interstitial water. Nonresidual metal concentrations, humic acid, FeS, and FeS2 are an order of magnitude higher in the muds than in the sands because of dilution by unreactive sand particles. Muds contain a larger proportion of metals in the mobile fractions; exchangeable (Mn), carbonate (Mn, Fe, Zn), and easily-reducible oxide (Fe, Mn, Zn, Pb). This is due to greater surface area (for Mn adsorption); the favorable conditions for MnCO3, FeCO3, and FeS precipitation; and higher concentrations of easily reducible iron oxide and humic acid. Therefore, compared to the sands, muds are more important as reservoirs for toxic metals, both in terms of quantity and availability. At either site there was very little difference between the forms of Zn, Pb or Cu identified by sequential extraction as sediments changed from oxic to anoxic conditions. One reason for this is that the amounts and proportions of some of the important components that bind metals, viz., amorphous iron hydrous oxides, humic acids, and FeS2, do not change much. Other components that do change with redox conditions, for example, manganese phases and FeS, are only minor components of the sediment. Redox conditions, then, have relatively little effect on trace-metal partitioning in the sediment matrix of these unpolluted sediments.  相似文献   

16.
The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (<?150 µm) was subjected to total digestion (HClO4?+?HF?+?HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As?=?99.40 µg/kg, Zn?=?573.24 µg/kg, V?=?963.14 µg/kg and Cr?=?763.93 µg/kg). Iron and Mn have significant average concentrations of 28.325 and 442 mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended.  相似文献   

17.
This research tests the hypothesis that trace metals respond to the extent of reducing conditions in a predictable way. We describe pore water and sediment measurements of iron (Fe), manganese (Mn), vanadium (V), uranium (U), rhenium (Re), and molybdenum (Mo) along a transect off Washington State (USA). Sediments become less reducing away from the continent, and the stations have a range of oxygen penetration depths (depth to unmeasurable O2 concentration) varying from a few millimeters to five centimeters. When oxygen penetrates ∼1 cm or less, Fe is reduced in the pore waters but reoxidized near the sediment-water interface, preventing a flux of Fe2+ to overlying waters, whereas Mn oxides are reduced and Mn2+ diffuses to overlying waters. Both Re and U authigenically accumulate in sediments. Only at the most reducing location, where the oxygen penetrates 0.3 cm below the sediment-water interface, does the surface 30 cm of sediments become reducing enough to authigenically accumulate Mo.Stations in close proximity to the Juan de Fuca Ridge crest are enriched in Mn and Fe from hydrothermal plume processes. Both V and Mo clearly associate with Mn cycling, whereas U may be associating with either Mn oxides and/or Fe oxyhydroxides. Rhenium is uncomplicated by adsorption to Mn oxides and/or Fe oxyhydroxides, and Re accumulation in sediments appears to be due solely to the extent of reducing conditions. Therefore, authigenic sediment Re enrichment appears to be the best indicator for intermediate reducing conditions, where oxygen penetrates less than ∼1 cm below the sediment-water interface, when coupled with negligible authigenic Mo enrichment.  相似文献   

18.
The collection of large volumes of pore water (1–2 liters per 2 cm horizon of sediment) and low level radiochemical measurements of 239,240Pu and 137Cs have been combined to produce the first study of these fallout artificial radionuclides in marine pore waters. Profiles from box cores taken in June and September 1982 from Buzzards Bay, Mass., are reported along with profiles of many diagenetic constituents (i.e. SO42?, alkalinity, Fe, Mn, DOC, and nutrients).The 239,240Pu pore water profile is characterized by a subsurface maximum of about 0.28 dpm/100 kg lying between 3–11 cm. Overlying seawater, in contrast, has an activity of 0.01 ± 0.02 dpm/100 kg. Below about 11 cm, the pore water 239,240Pu distribution follows that of the solid phase which decreases rapidly with depth. The pore water profiles of 137Cs are characterized by a broad and deeply penetrating maximum where activities of about 35–40 dpm/100 kg extend from 3 to 20 cm. Overlying seawater, in contrast, has an activity of 17–24 dpm/100 kg. The 137Cs and 239,240Pu pore water data show that there is preferential downward transport of 137Cs and that 239,240Pu does not have an active diagenetic chemistry and is not significantly mobile in these coastal sediments.  相似文献   

19.
In the present study, roadside-deposited sediment samples collected from Kuwait city district, in Kuwait, were analyzed for specific heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn). Contamination assessment status of heavy metals in roadside sediments was made using mathematical models in terms of enrichment factor (EF), geoaccumulation index (I geo), and contamination factor (CF). The sediments showed remarkably high levels of all the metals, except Ni, above background concentrations in the following order (As, Cu, Pb, Zn, Mn, and Cr). CF and I geo revealed overall moderately uncontaminated and moderate contamination, respectively, but the EFs for all metals ranged between moderate and significant enrichment.  相似文献   

20.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号