首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hysteresis measurements on three shergottite and two nakhlite meteorites indicate single domain grain size behavior for the highly shocked Shergotty, Zagami, and EETA 79001 meteorites, with more multidomain-like behavior for the unshocked Nakhla and Governador Valadares meteorites. High viscosity and initial susceptibility for Antarctic shergottite ALHA 77005 indicate the presence of superparamagnetic grains in this specimen. Thermomagnetic curves likewise reveal a range of oxidation states for the high ulvospinel titanomagnetite grains which dominate the magnetic properties of these first five meteorites. Thermomagnetic analysis indicate Shergotty and Zagami as the least initially oxidized, while EETA 79001 appears to be the most oxidized. Cooling of the meteorite samples from high temperature in air results in a substantial increase in magnetization due to the production of magnetite through oxidation exsolution of titanomagnetite. However, vacuum heating substantially suppresses this process, and in the case of EETA 79001 and Nakhla, results in a rehomogenization of the titanomagnetite grains.Remanence measurements on several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. A paleointensity experiment on a weakly magnetized subsample of Shergotty reveals a low temperature component of magnetization acquired in a field of 2,000 gammas. Also present was a high temperature component reflecting a paleo-field strength of between 250 and 1,000 gammas, depending on the nature and degree of alteration that the sample may have undergone with heating. This is consistent with an earlier paleointensity estimate of 1,000 gammas for ALHA 77005. The weak field environment that these meteorites seem to reflect is consistent with either a Martian or asteroidal body origin, but inconsistent with a terrestrial origin.  相似文献   

2.
Consortium samples of the Shergotty meteorite have been measured for C abundance and isotopic composition by stepped combustion and the results compared to different samples of the same meteorite and the other known shergottites. Clearly, the shergottite meteorites have a complex C chemistry and contain components of both low and high thermal stability. Two components labile at low temperature can be tentatively identified, one which is enriched in 13C and may be related to the carbonate thought to be produced by pre-terrestrial weathering in Nakhla. The other, which is isotopically light, is presently of unknown origin but we speculate that it may be related to shock effects. At high temperatures, two of the samples examined show evidence for a component of CO2 trapped from the martian atmosphere, possibly indicating that shock-produced glass is heterogeneously distributed throughout the shergottite group. This interpretation is corroborated by N isotope measurements made on one of the specimens. All samples appear to contain evidence of a high temperature magmatic component of C.  相似文献   

3.
We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that ε182W values in the nakhlites are uniform within analytical uncertainties and have an average value of ∼3. Also, while ε182W values in the shergottites have a limited range (from 0.3-0.7), their ε142Nd values vary considerably (from −0.2-0.9). There appears to be no correlation between ε182W and ε142Nd in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at ∼12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before ∼4542 Ma and the shergottite source reservoirs at 4525 Ma. These ages imply that, within the uncertainties afforded by the 182Hf-182W and 146Sm-142Nd chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct 182W-142Nd isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the 182W-142Nd isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before ∼4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs.  相似文献   

4.
Isotopic concentrations of the noble gases have been measured in several different phases of Elephant Moraine A79001 and in whole rock samples of Zagami and Allan Hills A77005, three meteorites which belong to the rare group of SNC achondrites that may have originated from the planet Mars. Shocked phases of EETA79001 contain a trapped Ar, Kr, and Xe component characterized by 84Kr132Xe ~15, 40Ar36Ar > 2000, 129Xe132Xe ≥ 2, and 4He40Ar ≤ 0.1. These elemental and isotopic ratios are unlike those for any other noble gas component except analyses of the Martian atmosphere made by Viking spacecraft. The isotopic composition of the trapped Kr shows an approximate 1% per mass unit enrichment of lighter isotopes compared to terrestrial Kr, and the traped Xe may show either a fission component or a fractionated enrichment of heavier isotopes compared to terrestrial Xe. It is hypothesized that these gases represent a portion of the Martian atmosphere which was shock-implanted into EETA79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. Cosmic ray-produced gases in the eight known SNC meteorites form three distinct groups with exposure ages of ~11 MY (Chassigny and the nakhlites), ~2.6 MY (Shergotty, Zagami, and ALHA77005), and ~0.5 MY (EETA79001). These ages suggest three distinct events and cannot have been produced by irradiation for a common time under greatly different shielding. Comparison of cosmogenic 3He21Ne measured in EETA79001 with two independent models for the production of this ratio as a function of shielding indicates that this meteorite was irradiated in space as a relatively small object. If the SNC meteorites were ejected from Mars ~ 180 My ago, the shock age of the shergottites, they must have been relatively large objects (>6 meters diameter) which experienced at least three space collisions to initiate cosmic ray exposure. Ejection from Mars by three events at the times of initiation of cosmic ray exposure would permit the ejected objects to have been much smaller (<1 meter diameter), but would require three such events on 1.3 Gy Martian terraine in the past ~10 MY and would not explain the common 180 MY shock age seen in all four shergottites.  相似文献   

5.
Stefan Gartner 《Earth》1977,13(3):227-250
Intensive biostratigraphic studies of calcareous nannofossils have been carried out for only about a decade, even though nannofossils have been known for over a century. Although coccoliths have been reported from various Paleozoic deposits, datable assemblages are known only from Liassic (early Jurassic) and younger strata. Today nannofossils are one of the best correlation tools available to the biostratigrapher in marine sediments that contain pelagic constituents. Precise age determinations and correlations can be made in Cretaceous and Cenozoic strata for which numerous reference sections have been studied. The Jurassic nannofossil succession is less completely known mainly because of a lack of good reference material.The very large number of specimens per sample and the minute size of calcareous nannofossils create both advantages and disadvantages in their utilization. Variability of synchronous assemblages may occur latitudinally as well as from the oceanic to the hemipelagic realms.  相似文献   

6.
The economics of aquaculture is reviewed on two levels: micro and macro. Micro-economics in aquaculture deals mainly with the management measures and elements affecting the efficiency of operation at the farm level, while macro-economics addresses the assessment of social benefits and costs of an aquaculture project. If aquaculture is socially beneficial but unattractive to private investors, public support on credit, marketing, extension, training, and research may be appropriate, especially during the early stages of development.The importance of economic analysis is emphasized since it provides a basis not only in the decision making of the individual farmer, but also in the formulation of aquaculture policies. Thus, greater attention should be focused on the improvement of economic data for analysis.  相似文献   

7.
Before spacecraft exploration, facts about the Moon were restricted to information about the lunar orbit, angular momentum and density. Speculations about composition and origin were unconstrained. Naked eye and telescope observations revealed two major terrains, the old heavily cratered highlands and the younger mostly circular, lightly cratered maria. The lunar highlands were thought to be composed of granite or covered with volcanic ash-flows. The maria were thought to be sediments, or were full of dust, and possibly only a few million years old. A few perceptive observers such as Ralph Baldwin (Baldwin 1949) concluded that the maria were filled with volcanic lavas, but the absence of terrestrial-type central volcanoes like Hawaii was a puzzle. The large circular craters were particularly difficult to interpret. Some thought, even after the Apollo flights, that they were some analogue to terrestrial caldera (e.g., Green 1971), formed by explosive volcanic activity and that the central peaks were volcanoes. The fact that the craters were mostly circular was difficult to accommodate if they were due to meteorite impact, as meteorites would hit the Moon at all angles. The rilles were taken by many as definitive evidence that there was or had been, running water on the lunar surface. Others such as Carl Sagan thought that organic compounds were likely present (see Taylor 1975, p. 111, note 139).  相似文献   

8.
9.
10.
11.
We separated and analyzed several organic and inorganic phases of the carbonaceous chondrite matrix to determine whether they contained any inherent asymmetry. Our intent was to determine any possible foci of asymmetry besides the one determined for meteoritic amino acids. As a probe, we employed a very sensitive asymmetric autocatalytic reaction. We were able to determine that asymmetry still resides in powders after extraction with water and solvents as well as in the insoluble organic material (IOM) obtained after demineralization. Asymmetry is not found any longer in the IOM after hydrothermal treatment and in meteorite powders from which all organics had been removed by O2 plasma at low temperature. The data are interpreted to indicate a diverse molecular asymmetry residing in yet unknown meteorite organics; these organics might have had an inductive effect on organic molecular evolution upon exogenous delivery to the early Earth.  相似文献   

12.
地层基准面研究概述   总被引:2,自引:0,他引:2       下载免费PDF全文
根据研究目的和内容的差异,形成了基准面研究的两个派别——地貌基准面和地层基准面。基准面的一个升降周期形成了一个基准面旋回,这种基准面旋回性导致了该旋回周期的特有岩石地层单元;而在不同的地质历史中,基准面旋回级别不一样,形成了不同级别的基准面旋回,控制了不同级别岩石地层单元的记录特征。同时在一个基准面升降旋回过程中,决定了沉积可容空间的大小,进而控制了沉积物的叠置模式。但基准面的形成和控制因素亟需进一步深入研究。  相似文献   

13.
14.
We report neutron activation data for Ag, As, Bi, Cd, Co, Cs, Cu, Ga, In, Rb, Se, Te, Tl and Zn in samples of Abee heated at temperatures of 1000–1400°C in a low-pressure environment (initially ~ 10?5 atm H2) and in 9 enstatite achondrites (aubrites) and the silicate portion of the unique stony-iron, Mt Egerton. Trace element losses in heated Abee progress with temperature, the lowest retention being 2.4 × 10?6 of initial contents. These data indicate trace element loss above 1000°C via diffusion-controlled processes having apparent activation energies of 8–55 kcal/mol ; only Co exhibits a significantly higher energy. These trace element data and those for aubrites, Mt Egerton and E4–6 chondrites, and mineralogic and isotopic evidence link all enstatite meteorites to a common parent body. Volatile, mobile elements vary inversely with cobalt content in aubrites and Mt Egerton but directly in E4–6 chondrites; this is inconsistent with all genetic models positing fractionation of such elements during nebular condensation and accretion. However, the data are consistent with the idea that aubrites and Mt. Egerton reflect fractional crystallization of a magma produced from enstatite chondrite-like parent material (probably E6) and late introduction of chalcophiles and mobile elements transported by FeS-Fe eutectic from an E4–6 region experiencing open-system metamorphism. As suggested earlier, the only primary process that affected enstatite meteorites involved fractionation of non-volatile lithophiles from sulfides and metal during condensation and accretion of chondritic parent material from the nebula. If, as seems likely, volatile/mobile elements reflect secondary processes, they can only be used to establish alteration conditions within the enstatite parent body and not to estimate temperatures during primary nebular condensation and accretion.  相似文献   

15.
16.
Tectonics of Northeast Asia: An overview   总被引:1,自引:0,他引:1  
The tectonic units of the Verkhoyansk-Chukotka Mesozoides and the Koryak-Kamchatka Fold Region substantially differ from each other in the structure and composition of terranes. The geodynamic settings of terrane formation are defined and the main stages of their tectonic history are reconstructed. The formation of Mesozoides was mainly controlled by collision, largely between the continent and the Kolyma-Omolon and Chukchi microcontinents. The accretionary structure of the Koryak Highland comprises various terranes transported by Pacific plates and docked to the Asian continent, periodically accreting its margin. The following evolutionary stages are established: destruction of the North Asian continent (Ordovician, Late Devonian-Early Carboniferous, Permian-Triassic); amalgamation (Middle Jurassic for Kolyma and Mid-Cretaceous for Koryak terranes); collision (terminal Early Cretaceous); and continental growth (terminal Early Cretaceous, terminal Late Cretaceous, middle Eocene).  相似文献   

17.
Precipitation retrieval from space: An overview   总被引:2,自引:0,他引:2  
During the last decade, satellite observations have allowed significant advances in quantifying precipitation, especially with the contribution of the TRMM mission. Observations at different wavelengths (visible, infrared, and microwaves), in both active and passive microwave modes, are analyzed, and eventually coupled to produce records of precipitation estimates over the globe, with up to hourly time sampling. This article provides an overview of the techniques, the results and the perspectives.  相似文献   

18.
沁水盆地石炭-二叠纪岩相古地理及聚煤作用研究   总被引:15,自引:0,他引:15  
晋东南沁水盆地是目前我国进行煤层气勘探开发的主要地区之一,煤层气储层主要是石炭系和二叠系的煤层,这些煤层气储层的厚度明显受沉积古地理控制。本文通过对露头及钻井剖面岩石学和沉积相研究,对该区主要含煤岩系-山西组和太原组进行了岩相古地理和煤储层聚集控制因素分析。太原组以石灰岩、铝土质泥岩、粉砂岩、粉砂质泥岩及砂岩为主,厚44.90~193.48 m,含多层可采煤层,总厚0~16.89 m,平均7.19 m,在太原组沉积期,研究区北部发育下三角洲平原相,煤层相对较厚,中部和南部为泻湖相,煤层相对较薄,东南角主要为滨外碳酸盐陆棚相,在晋城一带障壁砂坝相分布区,煤层亦较厚;山西组以砂岩、粉砂岩、泥岩为主,石灰岩仅在局部地区见到,该组厚18.60~213.25 m,含可采煤层1-2层,总厚0~10.0 m,平均4.20 m,在山西组沉积期,北部以下三角洲平原分流河道相为主,中部和南部以分流间湾相为主,东南部则以河口砂坝相为主,厚煤带都位于中部和南部三角洲分流间湾地区。总之,太原组富煤地带多与砂岩富集带相吻合,位于北部下三角洲平原和南部障壁砂坝地区,而山西组厚煤带大都位于南部三角洲分流间湾地区。  相似文献   

19.
Calciclastic submarine fans are rare in the stratigraphic record and no bona fide present-day analogue has been described to date. Possibly because of that, and although calciclastic submarine fans have long intrigued deep-water carbonate sedimentologists, they have largely been overlooked by the academic and industrial communities. To fill this gap we have compiled and critically reviewed the existing sedimentological literature on calciclastic submarine fans, thus offering an updated view of this type of carbonate slope sedimentary system.Calciclastic submarine fans range in length from just a few to more than 100 km. Three different types can be distinguished: (1) Coarse-grained, small-sized (< 10 km) fans, which are characterized by the abundance of calcirudites and the scarcity of mud. They have relatively long leveed channels and small radial lobes. (2) Medium-grained, medium-sized fans are typified by the abundance of calcarenites and lesser amounts of calcirudites and mud. They have a tributary network of slope gullies, which merge to form a leveed channel that opens to the main depositional site, characterized by extensive lobes and/or sheets, which eventually pass into basinal deposits through a narrow fan-fringe area. These fans are between 10 and 35 km in length. (3) Fine-grained, large-sized fans are rich in calcarenites and mud, but poor in calcirudites. They have wide and long slope channels that feed very extensive calciturbiditic sheets, the total length always exceeding 50 km and generally being close to 100 km. In terms of grain-size distribution the three fan types compare well with sand/gravel-rich, mud/sand-rich and mud-rich siliciclastic submarine fans, respectively. However, they show notable differences in terms of size and sedimentary architecture, a reflection of the different behaviour of their respective sediment gravity flows.Most calciclastic submarine fans were formed on low-angle slopes and were sourced from distally steepened carbonate ramps subjected to high-energy currents. Under these conditions shallow-water loose grainy sediments were transferred to the ramp slope and eventually funnelled into the submarine fan by sediment gravity flows. These conditions seem to have been more easily met on leeward margins in which the formation of reefs was hampered by cool waters, nutrient enrichment or oligophoty. Another circumstance that contributes to the transfer of shallow-water sediments to the distal ramp slope is a low sea level, forcing the carbonate factory closer to the slope break and destabilizing sediments by increased pore-water pressure. However, the most important factor controlling the development of calciclastic submarine fans was the existence of an efficient funnelling mechanism forcing sediment gravity flows to merge downslope and build up a point-sourced sedimentary accumulation. In most cases this occurred through a major slope depression associated with tectonic structures, an inherited topography, or large-scale mass failures.  相似文献   

20.
中国南方古大陆研究进展与问题评述   总被引:9,自引:0,他引:9  
王剑  潘桂棠 《沉积学报》2009,27(5):818-825
纵观近年来中国南方中新元古代古大陆研究的现状与进展,取得的成果主要体现在以下两个方面:(1)与华南古大陆演化有关的新元古代裂谷作用研究、冰川沉积事件研究、板溪群地层划分对比等取得了一系列重要成果;(2)与古大陆演化有关的火山—岩浆事件及其岩石地球化学研究、同位素地球化学研究及年代学研究等获得了一系列新的数据与新的认识。针对目前华南古大陆研究中存在的主要问题,特别是晋宁—四堡不整合面之上“楔状地层”的划分对比问题、沉积演化及其大地构造背景问题,不整合面之下变质岩系的时代归属及沉积盆地性质问题等,作者开展了较详细的讨论,试图引起国内外同行的重视,以期达到抛砖引玉之目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号