首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Tulva Upland is a meridional neotectonic swell that complicates the eastern Russian Plate in its recent manifestation. The intense recent uplift is expressed in the rise and splitting of terraces of the Kama River and anomalously increasing lateral ruggedness of topography. Having a steep western and a gentle eastern limb, the swell is sharply asymmetric in cross section and additionally is complicated by a chain of local NE-trending uplifts. Several morphostructural indications testify to the substantial role of NW-trending strike-slip faulting in the structure of the swell, which was formed under conditions of latitudinal compression and conjugated meridional extension. Such a stress-strain field is confirmed by the study of mesotectonic structural elements in the western steep limb of the swell regarded as a flexure above a suggested reverse fault. Like many other zones of within-plate dislocations in the Russian Plate, the recent Tulva Swell was formed as a result of folding of sedimentary fill and inversion of long-lived platform trough. In our case, this trough inherited the Riphean Kaltasy Aulacogen. Together with the unilateral, probably, reverse-fault-line (?) Ufa Horst, the Tulva Swell is situated opposite to the area of maximum near-latitudinal compression of the recent Urals (the socalled Ufa amphitheater, or Central Ural pinch) and along with other within-plate arches similar in structure—Bugul’ma-Belebei and Obschii Syrt—marks a zone of neotectonic reactivation of the Russian Plate near the Urals.  相似文献   

2.
During the Paleogene the Proto-South China Sea was subducted beneath northern Borneo. Subduction ended with Early Miocene collision of the Dangerous Grounds/Reed Bank/North Palawan block and the Sabah–Cagayan Arc. Much of northern Borneo then became emergent forming the Top Crocker Unconformity. Later in the Early Miocene subsidence resumed. It is proposed that northward subduction of the Celebes Sea initiated formation of the Sulu Sea backarc basin, followed by subduction rollback to the SE. This formed a volcanic arc, which emerged briefly above sea level and collapsed in the Middle Miocene. As rollback continued the Sulu Arc was active during Middle and Late Miocene between Sabah and the Philippines. Rollback drove extension in northern Borneo and Palawan, accompanied by elevation of mountains, crustal melting, and deformation offshore. There were two important extensional episodes. The first at about 16 Ma is marked by the Deep Regional Unconformity, and the second at about 10 Ma produced the Shallow Regional Unconformity. Both episodes caused exhumation of deep crust, probably on low angle detachments, and were followed by granite magmatism. The NW Borneo–Palawan Trough and offshore Sabah fold and thrust belt are often interpreted as features resulting from collision, regional compression or subduction. However, there is no seismicity, dipping slab or volcanicity indicating subduction, nor obvious causes of compression. The trough developed after the Middle Miocene and is not the position of the Paleogene trench nor the site of Neogene subduction. Inboard of the trough is a thick sediment wedge composed of an external fold and thrust belt and internal extensional zone with structures broadly parallel to the trough. The trough is interpreted as a flexural response to gravity-driven deformation of the sediment wedge, caused by uplift on land that resulted from extension, with a contribution of deep crustal flow.  相似文献   

3.
The study of tectonic sliding surfaces (hereafter, slickensides) and striae, as well as strike-slip echelons of quartz streaks, in the Kiselevka fault zone made it possible to reconstruct four groups of stress fields with a wide age range (from the Paleocene to Recent). The meridional compression and latitudinal extension of the earliest stress field promoted the left-lateral displacement along the Kiselevka fault. The fault activation in that period was accompanied by the final-phase magmatite formation in the East Sikhote-Alin volcanoplutonic belt. In contrast, the subsequent stress field of the sublatitudinal compression and submeridional extension changed the fault kinematics to right-lateral strike-slip ones. The origin and development of the Udyl intermontane depression is linked to these deformations. Upthrow deformations complicated the structure of the Udyl depression, whereas normal fault deformations produced the depression of Lake Udyl and the bays along the left bank of the Amur River.  相似文献   

4.
华北地区新生代岩石圈伸展减薄机制的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
新生代时期华北东部裂谷的伸展减薄机制及其周边的构造应力场,西部鄂尔多斯克拉通的抬升和周边断陷盆地的形成机制是目前研究的热点问题,但是较少有人从数值模拟的角度进行探讨。笔者采用有限元程序FEVPLIB对该地区5个剖面进行了模拟,初步取得如下认识:①在太平洋俯冲带的附近岩石圈伸展减薄较强,这与剖面经过的冲绳海槽正在拉开是吻合的,而太平洋的俯冲对较远的华北盆地的伸展减薄的影响较弱;②火山喷发时期,华北盆地有大的软流圈物质上涌造成华北裂谷的伸展减薄,符合纯剪切的机制,现今华北地区已趋于均衡,动力正趋于稳态;③六盘山逆冲在鄂尔多斯块体之上,代表着青藏高原东北缘的挤压,对华北是一个大的推挤力,可诱发鄂尔多斯块体的隆升,而鄂尔多斯向东北方向移动时提供了周边盆地的拉张的背景;④华北地区岩石圈的伸展减薄是六盘山处的挤压和东部太平洋板块俯冲两者联合的影响。模拟的结果与研究区GPS、重力异常以及岩石圈三维结构是吻合的。  相似文献   

5.
This work presents the results of studying zones bounded by the Archean and Early Proterozoic Taratash block, which breaks the meridional structure of the Urals, pinching its structural zones at the latitude of the town of Miass. The mesostructures of rupture zones, microtextures of tectonites, anisotropy of the magnetic susceptibility, and seismic-wave propagation rate in blastomylonites were studied. The kinematic history of the Taratash block consists of two phases: (1) exhumation in the Middle Riphean under conditions of crustal extension; and (2) the formation of an indenter in the Late Paleozoic under conditions of compression.  相似文献   

6.
The Bonin arc system is anomalous in that it does not appear to fit the tectonic pattern observed in most arc systems. Re-examination of this arc system, with a new bathymetric chart and against a background of recent studies in other arcs, leads to reasonable explanations for its anomalous characteristics. The frontal-arc volcanics on the Bonin Islands, which now form part of the trench slope break, can best be explained by the northward rifting of the Bonin Islands block from a position along the frontal arc under the influence of oblique subduction. The very large positive gravity anomaly over the islands results from the greater than normal density and volume of the volcanics compared to most trench slope breaks. The dominant northeast—southwest ridge and trough topography, into which the Iwo Jima Ridge (frontal arc) is broken may have resulted from compressions of the arc along its trend. This compression would be attributed to the southward movement of Japan as the Yamato Basin of the Sea of Japan opened in the Late Oligocene and Early Miocene. Recent extension is occurring in the Bonin arc system, as earlier suggested, but in an east—west direction. Features associated with extension can best be identified at the south end of the arc, but may persist for its entire length. This extension is either more rapid, or began first at the south end.  相似文献   

7.
对扬子地块西缘康滇裂谷北段的瓦斯沟花岗质杂岩进行了系统的岩石学、元素-Nd同位素地球化学研究,结果表明该岩体为I型花岗岩,是由前存年轻(中元古代末-新元古代初)岛弧地壳物质部分熔融形成的.早期的花岗岩形成于扬子地块西缘由会聚挤压向陆内伸展的转折环境,晚期的花岗闪长岩形成于板内环境,很可能与新元古代地幔柱事件有关.它们显示的"岛弧地球化学特征"是继承了源岩地球化学特征的结果,不代表其形成时的构造环境.  相似文献   

8.
The disturbance of mechanical and thermal equilibria in the upper shell of the Earth as a result of mantle or local within-plate processes related to periodic tectonic activity gives rise to the formation of convective flows in the low-viscosity asthenosphere. These flows affect the lithosphere and create domains of subsidence and uplift, which can continue to develop long after the cessation of active periods. If the density of the lithosphere does not decrease with depth, then small-scale flows increase uplift in zones of compression of the continental lithosphere and create domains of extension at their margins. In our opinion, small-scale convection is the main geodynamic factor that forms foredeeps. The results of detailed numerical modeling of foredeep formation at the margins of adjoining orogens are presented in the current paper. In order to set the initial conditions for the stage of continental collision, the precollision stages of the foldbelt evolution are considered, including the stage of trough formation on the thinned continental crust or on the oceanic lithosphere and the stage of sedimentary basin formation; depending on the degree of extension, this can be an inner sea or a passive continental margin. Such initial conditions were used in modeling of the compression stage (continental collision), when the orogen-foredeep system is formed. The parameters of the model and the tectonic processes are chosen so as to bring the results of numerical computation in line with the data on the Greater Caucasus and northern Forecaucasus, including the thickness of the crustal layers and sedimentary cover, structure of the foredeeps, rate of tectonic subsidence, heat flow, etc. Comparison of the numerical modeling results with the formation history of the Caucasus foredeeps confirms that the first stage of regional compression of the Greater Caucasus took place before the deposition of the Maikop sediments. At least three compression stages followed: 16.6–15.8 Ma (Tarchanian), 14.3–12.3 Ma (Konkian-early Sarmatian), and 7.0–5.2 Ma (Pontian). The next stage of regional compression is apparently occurring at present.  相似文献   

9.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


10.
Integrated seismological and structural geomorphological studies of the western Tunka system of basins in the southwestern Baikal rift show that the historic seismicity reflects the general Late Quaternary evolution trend of structures. Crustal deformation occurs mainly as transpression. Compression follows block boundaries and the northern mountainous borders of basins, whereas extension acts upon basin inner parts which remain in “tectonic shadow” during left-lateral strike-slip motions on W-E faults. Principal stresses inferred from earthquake mechanisms are most often a combination of horizontal NW extension and oblique or vertical compression in the basins and vertical extension with horizontal NE compression in the bordering ridges and along block boundaries. The general deformation style in the region is dominated by strike-slip faulting, and compression (shortening) dominates over extension.  相似文献   

11.
东海西湖凹陷第三系反转构造及其对油气聚集的影响   总被引:11,自引:1,他引:11  
东海西湖第三纪凹陷经历了早期裂陷和晚期挤压的构造作用,形成了现今规模宏大的反转构造。反转构造是先存的张性断裂后期受到挤压逆冲反转而形成的一种挤压构造与拉伸构造在垂向上叠加的复合构造。按反转强度的差异,本区的反转构造可划分为简单断展型和穿透断展型2种基本类型;按反转构造的几何样式,又可分为简单后冲反转、复合“Y”字型反转、“火”字型反转和花状反转等。凹陷内发育有东缘、中部、西斜坡边缘等3个反转构造带。沿中央凹陷带的反转作用最强,东缘次之,西斜坡边缘最弱。  相似文献   

12.
Seismotectonic deformations of crustal volumes related to geographical coordinates were calculated from data on earthquake focal mechanisms. The crust of the western part of Asia, including the Tien Shan, Tarim massif, Tibet, Pamir-Karakorum, and Kun Lun, undergoes predominantly longitudinal shortening and latitudinal extension. In the eastern part, longitudinal extension and latitudinal shortening are observed. The notional boundary separating these parts is determined over a fairly wide range between longitudes 95° and 103° E and is apparently related to the northward compression from the Indian plate in the south and the westward compression from the Okhotsk and Philippine plates in the east. At the same time, this boundary may indicate the maximum zone of influence of the Indian plate. The boundaries of the Amurian plate are inferred from changes in seismotectonic deformations in the eastern part of Asia. Differences in the seismotectonic deformation of the Earth’s crust are found within the northern part of the Okhotsk plate and the surrounding area.  相似文献   

13.
李虹  王立军  王凯 《地球学报》2001,22(5):437-440
辽河东部凹陷断槽构造发育、岩相充填及油气分布。凹陷内主干断裂的伸展和走滑作用控制着深断槽的发育与演化,充填断槽的沙三段地层以侧向和径向的扇三角洲体系的河道砂体为主,并主要沿斜坡和低洼断槽的轴线分布,是岩性油气藏发育的有利部位,走滑断裂活动使断槽高部位火山岩形成大量构造裂缝,并发育火山岩油气藏。勘探实践证明,深断槽内沙三段赋存丰富的油气资源。  相似文献   

14.
15.
基底先存断裂的活动会对其盖层岩层的变形起到较大的影响,尤其当应力直接作用于基底时更是对变形起到了控制作用。通过一系列的砂箱实验模拟分析了在统一的构造应力场中,当深部的基底断裂作平移滑动时盖层断块的被动变形情况:当其具有伸展分量时,会形成一个近对称的走滑 伸展裂谷形态,当具有挤压分量时,会形成以逆冲走滑断裂为边界的对称的局部挠曲隆起;同时在剖面上会形成典型的走滑构造特征,变形区域的大小与伸展或挤压分量的大小有关。先存的盖层断块受到基底作用力时,除内部变形本身还会发生旋转,形成局部的拉伸和挤压区;当一个地区的基底断裂多次活动甚至发生反转时,就会使地表形成特别复杂的构造现象;郯庐断裂带中段的埕岛-垦东潜山构造带的变形是一个典型的走滑基底控制的情况,实验结果证明基底的走滑反转变形造成这些断块的旋扭,盖层的非完全反转形成了剖面上的“复式花状构造”。  相似文献   

16.
Tectonophysical studies are conducted in South Sakhalin for identification of temporal–spatial changes in the geodynamic settings of the formation of the local structures. Analysis of the field data reveals 11 local stress state (LSS) in the large newest megastructures, which were formed on geological basement of different ages. The parameters of the tectonic stresses are significantly distinct in each LSS, especially the orientations (up to reindexation) of the compression and extension axes in different fault wings. Tectonic stresses of two ages and constant latitudinal and horizontal compression axis are reconstructed. The earlier cofold shear stress field with a horizontal and longitudinal extension axis is post-Miocene and the later stress field of the reversed fault with a vertical extension axis is orogenic. The LSSs reconstructed for the first time by the displacement vectors on slickensides, along with the data on the earthquake mechanisms, substantiate the reindexation of the horizontal extension axis with the vertical intermediate axis of major normal stresses at the postfold orogenic stage of evolution of the territory. These results are in agreement with previous data on the transformation of the dextral to reverse thrust displacements along the longitudinal fault systems. The young stress field is more confidently interpreted in the activation fault zones, which limit the orogenic blocks, whereas the traces of cofold deformations without younger orogenic stress fields better remain inside the blocks which are composed of older and strongly dislocated Mesozoic rocks.  相似文献   

17.
利用高精度三维地震数据结合钻井资料,分析了义东地区构造特征,恢复了构造演化过程,剖析了义东断槽的形成机理。研究表明,NW和NE向断层将义东地区切割成“两山一槽二台阶”的构造格局,义东断槽夹持于NW向义古56断层与义古991断层之间。SN剖面上,断槽内古生界残留厚度较为稳定,中生界由北向南减薄,而古近纪孔店组则由东向西减薄;EW剖面上,义古991断层前缘形成多条叠瓦状逆断层,后缘伴生一系列阶梯状正断层,表现为“前压后张”,具有重力滑动构造的特征。平衡剖面分析表明,义东地区经历了稳定、挤压、反转、裂陷及拗陷等5个演化阶段。裂陷阶段,义古56、义古991、义东等断层将义东断槽基底切割成孤立的块体,并在断块掀斜作用下,发生由东向西的重力滑动,义东断槽形成并定型。因此,义东断槽的形成受控于重力滑动,其中喜马拉雅早期的裂陷运动是重力滑动的基础,宽缓的义古991断层断面是重力滑动的必要条件,义东断层下盘抬升造成的地层掀斜是重力滑动构造的触发机制。  相似文献   

18.
再论大陆构造与动力学   总被引:20,自引:3,他引:20       下载免费PDF全文
李德威 《地球科学》1995,20(1):19-26
采用大陆构造时空动态相关分析法,对大陆构造进行系统的分层,分块,分阶段域构造解析,认为包括隆块,陷块和旋块等基本类型的断块构造具有不同的物质成分,变形强度,流变状态的层状构造是大陆构造的基本型式。在构造活动期间层流隆陷构造系统发生大规模的物质行,构成动态的循环体系,大陆地壳下部层圈以热动力作用为主,造成粘性热流物质和韧性固流物质沿着壳内流层从幔隆区流向拗区;上部层圈以应力作用为主,与下地壳层流相关  相似文献   

19.
华北地块北缘中新元古界沉积构造演化   总被引:2,自引:0,他引:2  
根据文献资料及对研究区8 条实测剖面资料的综合分析结果表明,Columbia 超级大陆的裂解导致华北陆块北缘大陆裂 谷盆地的形成。随着大陆进一步伸展和洋壳的形成,华北地块北缘逐渐发展为被动大陆边缘。在1400 Ma 左右,即铁岭组 沉积后,华北地块北缘转变为活动大陆边缘。早期洋壳向华北地块低角度的俯冲造成弧后地区发生挤压(芹峪上升),导致 铁岭组抬升和剥蚀,而后期洋壳高角度的俯冲又造成弧后区域发生强烈的伸展和断陷,沉积了下马岭组,并伴随辉绿岩的 侵入。华北地块与相邻地体之间的碰撞导致下马岭组的抬升(或蔚县抬升)以及碰撞花岗岩的形成,挤压构造发生的时间 对应于Rodinia 超级大陆的形成期。新元古代沉积是Rodinia 超级大陆裂解的结果。龙山组石英砂岩和海绿石砂岩是Rodinia 超级大陆裂解后的最早期沉积,记录了海侵初期的超覆过程。  相似文献   

20.
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号