首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical enrichment in the galactic halo is studied, on the basis of the numerical model developed in Paper I, with paricular attention to the overabundances of O and light elements with respect to Fe shown by metal poor stars. Some representative nucleosynthesis pictures for stars of both Population I and Population II are considered and their yields are compared with observations of relative abundances in the Sun and in the halo, to identify the possible reasons of the observed compositional differences. It is found that solar elemental ratios can be reproduced if intermediate mass stars are allowed to give some contribution to the production of Fe by type-I supernovae, while the ratios of abundances observed in the halo are more similar to the relative yields produced by massive stars. These features are shared by all the nucleosynthesis schemes which have been considered. Using the best model of Paper I, we show that the steep star formation induced by the collapse has a decisive effect in maintaining the overabundances of light elements during the whole evolution of the halo. The relevance of this conclusion is discussed also in the light of a possible interpretation of the differences between the two abundance scales for globular clusters.  相似文献   

2.
《New Astronomy》2002,7(4):161-169
In the usual and most widespread textbook picture of the Milky Way Galaxy, disk stars like the Sun are referred to as Population I, the spheroidal or halo component in turn as Population II. The latter is thought of as the pressure-supported, metal-poor relic of the early Galaxy, with renewed interest in recent years in the search for dark matter via microlensing. Modelling the putative massive compact halo objects however, faces the problem that the stellar halo is generally considered to consist of only a few billion solar masses. Here we present observational evidence that even this low budget may be a factor ten too high. If so, this immediately implies that the classical population II of halo stars is fairly irrelevant, not only in the dark matter context, but, in particular, in models of the formation and evolution of the Milky Way Galaxy.  相似文献   

3.
We present high-resolution spectroscopic observations of 21 B-type stars, selected from the Edinburgh–Cape Blue Object Survey. Model atmosphere analyses confirm that 14 of these stars are young, main-sequence B-type objects with Population I chemical compositions. The remaining seven are found to be evolved objects, including subdwarfs, horizontal branch and post-AGB objects. A kinematical analysis shows that all 14 young main-sequence stars could have formed in the disc and subsequently been ejected into the halo. These results are combined with the analysis of a previous subsample of stars taken from the Survey. Of the complete sample, 31 have been found to be young, main-sequence objects, with formation in the disc, and subsequent ejection into the halo, again being found to be a plausible scenario.  相似文献   

4.
The age difference between the oldest Population I stars and the extreme Population II stars is investigated by comparison of observational H-R diagrams with theoretical results using the common input physics and computer program for both Populations. Chemical compositions adopted for Population I and II stars are,X=0.7 andZ=0.02, andX=2×10–4, respectively. Evidence collected indicates that the open cluster NGC 188 and the globular cluster M92 are the representative samples of the oldest Population I and extreme Population II stars, respectively. Comparison between the observed H-R diagrams and theoretical isochrones in terms of the luminosity of the subgiant region and the turnoff point for NGC 188 and M92, respectively, then suggests that there is a significant age difference between Population I and II objects. The uncertainty of the oxygen abundance in the extreme Population II stars and its effect on their age determination is briefly discussed.  相似文献   

5.
The HYPER-MUCHFUSS (HYPER-velocity stars or Massive Unseen Companions of Hot Faint Underluminous Stars from SDSS) project targets a population of high-velocity subluminous B stars to discover either close binaries with massive unseen companions or hyper-velocity stars. We re-observed high-velocity subdwarf selected candidates from the SDSS spectroscopic Data Release 6. Starting in 2007 we used several instruments and have now reached a completion level of 33% (from 265 targets), whereas we found at least 16 close binaries. Here we present results for two of our 39 hyper-velocity star candidates. From the available Digitized Sky Surveys photographic plates we measured a significant proper motion for 14 stars. Combining this information with a detailed spectroscopic analysis allows for the first time a complete determination of the 3D-trajectories for a high-velocity sample. We present our preliminary results for the two subdwarfs J1644+4523 and J1211+1437. Assuming the Standard Allen and Santillan (Rev. Mex. Astron. Astrofis. 22:255, 1991) potential the first one is bound and originates in the central region of the Galaxy. The subdwarf B star J1211+1437 is possibly unbound and seems to originate in the Galactic rim. We also performed numerical kinematical experiments with increased dark matter halo mass. and found that the origin of J1644+4523 in the central region is not changed but the time-of-flight is drastically shortened. J1211+1437 would be bound and probably belongs to population II.  相似文献   

6.
UBV measurements of early‐type stars, mostly eclipsing binaries, obtained at La Silla in the years 1990 to 1994 with the ESO 50 cm telescope are presented. Most of these data were already used in our individual studies of several binaries. Now all photometric measurements were reduced again with an advanced technique and are made available electronically. Our data for MY Ser have not yet been published; new light curve is given and solved. The result is that MY Ser is a contact binary, with very large fill‐out parameter. Also a light curve and its solution for V1051 Cen are provided, and the problem of the period of V871 Cen is pointed out. Besides binaries (and the comparison and check stars) data for several stars in southern H II regions are included. Extinction and transformation coefficients are given (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Wolf-Rayet stars     
Summary Recent literature on Population I Wolf-Rayet star research extending from the Milky Way to blue compact dwarf galaxies is reviewed, broken down into inventory, basic parameters and galactic distribution, atmospheres, binaries, intrinsic variability, mass loss, enrichment and evolution. Also the incidence of Wolf-Rayet stars with variable non-thermal radio emission, excess X-ray fluxes, and episodic/periodic IR excesses is reviewed. These phenomena appear to be associated with wind-wind interaction in wide long-period WR+OB binaries and with wind-compact object interaction in WR+c binaries, with orbit sizes of the order of magnitude of the WR radio photosphere sizes or larger.  相似文献   

8.
We have compared the kinematics and metallicity of the main-sequence binary and single uvby F stars from the Hipparcos catalog to see if the populations of these stars originate from the same statistical ensemble. The velocity dispersions of the known unresolved binary F stars have been found to be dramatically smaller than those of the single F stars. This suggests that the population of these binaries is, in fact, younger than that of the single stars, which is further supported by the difference in metal abundance: the binaries turn out to be, on average, more metal rich than the single stars. So, we conclude that the population of these binaries is indeed younger than that of the single F stars. Comparison of the single F stars with the C binaries (binary candidates identified in Suchkov & McMaster) has shown, on the other hand, that the latter stars are, on average, older than the single F stars. We suggest that the age difference between the single F stars, known unresolved binaries, and C binaries is associated with the fact that stellar evolution in a binary systems depends on the binary components' mass ratio and separation, with these parameters being statistically very different for the known binaries and C binaries (e.g., mostly substellar secondaries in C binaries vs. stellar secondaries in known binaries). In general we conclude that the populations of known binaries, C binaries, and single F stars do not belong to the same statistical ensemble. The implications of the discovered age difference between these populations along with the corresponding differences in kinematics and metallicity should be important not only for understanding the evolution of stars but also for the history of star formation and the evolution of the local Galactic disk.  相似文献   

9.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Data from our compiled catalog of spectroscopically determined magnesium abundances in dwarfs and subgiants with accurate parallaxes are used to select Galactic halo stars according to kinematic criteria and to identify presumably accreted stars among them. Accreted stars are shown to constitute the majority in the Galactic halo. They came into the Galaxy from disrupted dwarf satellite galaxies. We analyze the relations between the relative magnesium abundances, metallicities, and Galactic orbital elements for protodisk and accreted halo stars. We show that the relative magnesium abundances in protodisk halo stars are virtually independent of metallicity and lie within a fairly narrow range, while presumably accreted stars demonstrate a large spread in relative magnesium abundances up to negative [Mg/Fe]. This behavior of protodisk halo stars suggests that the interstellar matter in the early Galaxy mixed well at the halo formation phase. The mean metallicity of magnesium-poor ([Mg/Fe] < 0.2 dex) accreted stars has been found to be displaced toward the negative values when passing from stars with low azimuthal velocities (|Θ| < 50 km s?1) to those with high ones at Δ[Fe/H] ≈ ?0.5 dex. The mean apogalactic radii and inclinations of the orbits also increase with increasing absolute value of |Θ|, while their eccentricities decrease. As a result, negative radial and vertical gradients in relative magnesium abundances are observed in the accreted halo in the absence of correlations between the [Mg/Fe] ratios and other orbital elements, while these correlations are found at a high significance level for genetically related Galactic stars. Based on the above properties of accreted stars and our additional arguments, we surmise that as the masses of dwarf galaxies decrease, the maximum SN II masses and, hence, the yield of α-elements in them also decrease. In this case, the relation between the [Mg/Fe] ratios and the inclinations and sizes of the orbits of accreted stars is in complete agreement with numerical simulations of dynamical processes during the interaction of galaxies. Thus, the behavior of the magnesium abundance in accreted stars suggests that the satellite galaxies are disrupted and lose their stars en masse only after dynamical friction reduces significantly the sizes of their orbits and drags them into the Galactic plane. Less massive satellite galaxies are disrupted even before their orbits change appreciably under tidal forces.  相似文献   

11.
The new approach outlined in Paper I to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few per cent of the initial number of stars in the cluster mass). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300 000 equal point-mass stars, plus 30 000 equal-mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. The cluster evolution is about three times slower than found by Gao et al. Other features are rather comparable. At every moment we are able to show the individual distribution of binaries in the cluster.  相似文献   

12.
Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope. Most of them are main-sequence stars, but some of them are post main-sequence systems. They are good astrophysical laboratories for studying several problems such as the merging of binary stars, evolution of the common envelope, the origin of luminous red nova outbursts and the formation of rapidly rotating single stars with possible planetary systems. A large number of contact binary candidates were detected by several photometric surveys around the world and many of them were observed by the LAMOST spectroscopic survey. Based on follow-up observations,the evolutionary states and geometrical structures of some systems were understood well. In this review,we will introduce and catalog new stellar atmospheric parameters(i.e., the effective temperature(Teff), the gravitational acceleration(log(g)), metallicity([Fe/H]) and radial velocity(Vr)) for 9149 EW-type contact binaries that were obtained based on low-and medium-resolution spectroscopic surveys of LAMOST. Then we will focus on several groups of contact binary stars, i.e., marginal contact binary systems, deep and low-mass ratio contact binary stars, binary systems below the short-period limit of contact binaries and evolved contact binaries. Marginal contact binaries are at the beginning of the contact stage, while deep and low-mass ratio contact binary stars are at the final evolutionary stage of tidally locked binaries. Several statistical relations including the period-temperature relation are determined well by applying LAMOST data and their formation and evolutionary states are reviewed. The period-color relation of M-type binaries reveals that there are contact binaries below the short-period limit. Searching for and investigating contact binaries near and below this limit will help us to understand the formation of contact binary systems and a new prediction for the short-period limit is about 0.15 d. Some evolved contact binaries were detected by the LAMOST survey where both components are sub-giants or giants. They provide a good opportunity to investigate evolution of the common envelope and are the progenitors of luminous red novae like V1309 Sco.  相似文献   

13.
14.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

15.
One of interactions of young active stars with interstellar gas is excitation of shock waves, that compress the gas and favour the formation of new generation of stars. Thus, a positive feedback between stellar and gaseous constituents is realized. When spread from point to point this interaction gives rise to a stationary wave of star formation. The properties of such a wave are analyzed both in homogeneous and clumped media.The stationary wave of star formation is a natural mechanism that can provide a coherent behaviour (such as global star bursts) of large star-gas systems. Particularly, the origin of extreme and intermediate halo populations in our Galaxy are possibly produced by large-scale star burst, that was initiated by stationary wave of formation of Population III stars.  相似文献   

16.
The frequency of Be and Ae stars in spectroscopic binaries and Algol binaries is examined based on the available catalogue data, and compared with that of stars in theBright Star Catalogue. It is shown that in binary systems Be and Ae stars reveal different statistical behaviours. The frequency of Be stars in spectroscopic binaries shows a notable peak in its orbital-period distribution in the range of 100–300 days, suggesting a statistical group separated from Algol systems. In contrast, most of Ae stars in spectroscopic binaries belong to the Algol systems.  相似文献   

17.
We present a new catalogue of variable stars compiled from the data taken for the University of New South Wales Extrasolar Planet Search. From 2004 October to 2007 May, 25 target fields were each observed for one to four months, resulting in ∼87 000 high-precision light curves with 1600–4400 data points. We have extracted a total of 850 variable light curves, 659 of which do not have a counterpart in the General Catalogue of Variable Stars, the New Suspected Variables catalogue or the All Sky Automated Survey southern variable star catalogue. The catalogue is detailed here, and includes 142 Algol-type eclipsing binaries, 23 β Lyrae-type eclipsing binaries, 218 contact eclipsing binaries, 53 RR Lyrae stars, 26 Cepheid stars, 13 rotationally variable active stars, 153 uncategorized pulsating stars with periods <10 d, including δ Scuti stars, and 222 long period variables with variability on time-scales of >10 d. As a general application of variable stars discovered by extrasolar planet transit search projects, we discuss several astrophysical problems which could benefit from carefully selected samples of bright variables. These include (i) the quest for contact binaries with the smallest mass ratio, which could be used to test theories of binary mergers; (ii) detached eclipsing binaries with pre-main-sequence components, which are important test objects for calibrating stellar evolutionary models and (iii) RR Lyrae-type pulsating stars exhibiting the Blazhko effect, which is one of the last great mysteries of pulsating star research.  相似文献   

18.
In the first paper of this series, we presented EBAS – Eclipsing Binary Automated Solver, a new fully automated algorithm to analyse the light curves of eclipsing binaries, based on the ebop code. Here, we apply the new algorithm to the whole sample of 2580 binaries found in the Optical Gravitational Lensing Experiment (OGLE) Large Magellanic Cloud (LMC) photometric survey and derive the orbital elements for 1931 systems. To obtain the statistical properties of the short-period binaries of the LMC, we construct a well-defined subsample of 938 eclipsing binaries with main-sequence B-type primaries. Correcting for observational selection effects, we derive the distributions of the fractional radii of the two components and their sum, the brightness ratios and the periods of the short-period binaries. Somewhat surprisingly, the results are consistent with a flat distribution in log P between 2 and 10 d. We also estimate the total number of binaries in the LMC with the same characteristics, and not only the eclipsing binaries, to be about 5000. This figure leads us to suggest that  (0.7 ± 0.4)  per cent of the main-sequence B-type stars in the LMC are found in binaries with periods shorter than 10 d. This frequency is substantially smaller than the fraction of binaries found by small Galactic radial-velocity surveys of B stars. On the other hand, the binary frequency found by Hubble Space Telescope ( HST ) photometric searches within the late main-sequence stars of 47 Tuc is only slightly higher and still consistent with the frequency we deduced for the B stars in the LMC.  相似文献   

19.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

20.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号