共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of asymmetric thermal forcing associated with land–sea distribution on interdecadal variation in large-scale circulation and blocking was investigated using observations and the coupled model intercomparison project outputs. A land–sea index (LSI) was defined to measure asymmetric zonal thermal forcing; the index changed from a negative to a positive anomaly in the 1980s. In the positive phase of the LSI, the 500 hPa geopotential height decreased in the polar regions and increased in the mid-latitudes. The tropospheric planetary wave activity also became weaker and exerted less easterly forcing on the westerly wind. These circulation changes were favorable for westerly wind acceleration and reduced blocking. In the Atlantic, the duration of blocking decreased by 38 % during the positive LSI phase compared with that during the negative phase; in Europe, the number of blocking persisting for longer than 10 days during the positive LSI phase was only half of the number during the negative phase. The observed surface air temperature anomaly followed a distinctive “cold ocean/warm land” (COWL) pattern, which provided an environment that reduced, or destroyed, the resonance forcing of topography and was unfavorable for the development and persistence of blocking. In turn, the responses of the westerly and blocking could further enhance continental warming, which would strengthen the “cold ocean/warm land” pattern. This positive feedback amplified regional warming in the context of overall global warming. 相似文献
2.
In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land–sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land–sea SAT contrast in the transient warming simulations of coupled atmosphere–ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO 2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land–sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO 2-induced continental warming. The degree of strengthening of the land–sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO 2-induced positive and SST-induced negative contributions to the land–sea contrast. These results imply that changes of climate patterns over the land–ocean boundary regions are sensitive to future scenarios of CO 2 concentration pathways including extreme cases. 相似文献
4.
Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden–Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index. 相似文献
6.
We investigate winter Arctic Amplification (AA) on synoptic timescales and at regional scales using a daily version of the Arctic Amplification Index (AAI) and examine causes on a synoptic scale. The persistence, frequency and intensity of high AAI events show significant increases over the Arctic. Similarly, low AAI events are decreasing in frequency, persistence and intensity. In both cases, there are regional variations in these trends, in terms of significance and timing. Significant trends in increasing persistence, frequency and intensity of high AAI events in winter are concentrated in the period 2000–2009, with few significant trends before and after this. There are some decreases in sea-ice concentration in response to synoptic-scale AA events and these AA events can contribute to the decadal trends in AA found in other studies. A sectoral analysis of the Arctic indicates that in the Beaufort–Chukchi and East Siberian–Laptev Seas, synoptic scale high AAI events can be driven by tropical teleconnections while in other Arctic sectors, it is the intrusion of moisture-transporting synoptic cyclones into the Arctic that is most important in synoptic-scale AA. The presence of Rossby wave breaking during high AAI events is indicative of forcing from lower latitudes, modulated by variations in the jet stream. An important conclusion is that the increased persistence, frequency and intensity of synoptic-scale high AAI events make significant contributions to the interannual trend in AA. 相似文献
7.
The focus of this paper is to assess the relative role of the north?Csouth and east?Cwest contrasts in atmospheric heating for the maintenance of the South Asian summer monsoon climatology. The juxtaposition of the Eurasian land mass and the Indian Ocean is responsible for the north?Csouth contrast, while the greater diabatic heating above the western Pacific compared to the one over the African and the tropical South Atlantic Ocean region introduces the east?Cwest gradient. With a series of idealized atmospheric general circulation model experiments, it is found that both contrasts contribute to the maintenance of the South Asian monsoon climatology, but their impact varies at regional scales. The surface atmospheric cyclone and precipitation over northern India are mainly due to the north?Csouth contrast. On the other hand, when the Indian Ocean sea surface temperatures are close to their climatological mean values, the low-level cyclone and consequent rainfall activity in the Bay of Bengal and southern India result from the east?Cwest gradient. The physical mechanism relays on the southern part of the upper-level South Asian monsoon high being forced by the east?Cwest diabatic heating contrast via Sverdrup balance. The east?Cwest heating difference controls also the strength of the Tropical Easterly Jet. Finally, the contribution of the El Ni?o Southern Oscillation to the interannual variability of the Indian monsoon is interpreted as the result of a longitudinal shift of one of the centers of diabatic heating contributing to the east?Cwest contrast. 相似文献
9.
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO 2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II. 相似文献
10.
Over the tropical oceans, higher sea surface temperatures (SST, above 26 °C) in summer are generally accompanied by increased precipitation. However, it has been argued for the last three decades that, any monotonic increase in precipitation with respect to SST is limited to an upper threshold of 28–29.5 °C, and beyond this, the relationship fails. Based on this assessment it has often been presumed that, since the mean SSTs over the Asian monsoon basins (Indian Ocean and north-west Pacific) are mostly above the threshold, SST does not play an active role on the summer monsoon variability. It also implies that increasing SSTs due to a changing climate need not result in increasing monsoon precipitation. The current study shows that the response of precipitation to SST has a time lag, that too with a spatial variability over the monsoon basins. Taking this lag into account, the results here show that enhanced convection occurs even up to the SST maxima of 31 °C averaged over these basins, challenging any claim of an upper threshold for the SST-convection variability. The study provides us with a novel method to quantify the SST-precipitation relationship. The rate of increase is similar across the basins, with precipitation increasing at ~2 mm day ?1 for an increase of 1 °C in SST. This means that even the high SSTs over the monsoon basins do play an active role on the monsoon variability, challenging previous assumptions. Since the response of precipitation to SST variability is visible in a few days, it would also imply that including realistic ocean–atmosphere coupling is crucial even for short term monsoon weather forecasts. Though recent studies suggest a weakening of the monsoon circulation over the last few decades, results here suggest an increased precipitation over the tropical monsoon regions, in a global warming environment with increased SSTs. Thus the signature of SST is found to be significant for the Asian summer monsoon, in a quantifiable manner, seamlessly through all the timescales—from short-term intraseasonal to long-term climate scales. 相似文献
11.
The formation mechanism of diurnal rainfall in Taiwan is commonly recognized as a result of local forcings involving solar thermal heating and island-scale land–sea breeze (LSB) interacting with orography. This study found that the diurnal variation of the large-scale circulation over the East Asia-Western North Pacific (EAWNP) modulates considerably the diurnal rainfall in Taiwan. It is shown that the interaction between the two LSB systems—the island-scale LSB and the large-scale LSB over EAWNP—facilitates the formation of the early morning rainfall in western Taiwan, afternoon rainfall in central Taiwan, and nighttime rainfall in eastern Taiwan. Moreover, the post-1998 strengthening of a shallow, low-level southerly wind belt along the coast of Southeast China appears to intensify the diurnal rainfall activity in Taiwan. These findings reveal the role of the large-scale LSB and its long-term variation in the modulation of local diurnal rainfall. 相似文献
13.
A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the n... 相似文献
14.
l.Intr0ducti0nAschemeforretrievingCOprofilesinthetroPOspherehasbeendiscussedinthepreviousPartI(WuandGille,partI)foragascorrelationradiometerMeasurementsofPollutionintheTroPOsphere(M0PITT)workingatthe4.6pmwaveband.Thebasicequationshavebeendiscussed.TheuseofthewidebandsignalforprovidingthesurfacetemPeratureandanaddi-tionalchannelforthecolumnarC0amounttoimprovetheretrievalinthenearsurfacelayerhasbeentested.Itisfoundthaterrorsinthetemperatureprofilemayincreaseerrorsinthere-trievedprofiles… 相似文献
15.
The individual contributions of insolation and greenhouse gases (GHG) to the interglacial climates of the past 800,000?years are quantified through simulations with a model of intermediate complexity LOVECLIM and using the factor separation technique. The interglacials are compared in terms of their forcings and responses of surface air temperature, vegetation and sea ice. The results show that the relative magnitude of the simulated interglacials is in reasonable agreement with proxy data. GHG plays a dominant role on the variations of the annual mean temperature of both the Globe and the southern high latitudes, whereas, insolation plays a dominant role on the variations of tree fraction, precipitation and of the northern high latitude temperature and sea ice. The Mid-Brunhes Event (MBE) appears to be significant only in GHG and climate variables dominated by it. The results also show that the relative importance of GHG and insolation on the warmth intensity varies from one interglacial to another. For the warmest (MIS-9 and MIS-5) and coolest (MIS-17 and MIS-13) interglacials, GHG and insolation reinforce each other. MIS-11 (MIS-15) is a warm (cool) interglacial due to its high (low) GHG concentration, its insolation contributing to a cooling (warming). MIS-7, although with high GHG concentrations, can not be classified as a warm interglacial due to it large insolation-induced cooling. Related to these two forcings, MIS-19 appears to be the best analogue for MIS-1. In the response to insolation, the annual mean temperatures averaged over the globe and over southern high latitudes are highly linearly correlated with obliquity. However, precession becomes important in the temperature of the northern high latitudes and controls the tree fraction globally. Over the polar oceans, the response during the local winters, although the available energy is small, is larger than during the local summers due to the summer remnant effect. The sensitivity to double CO 2 is the highest for the coolest interglacial. 相似文献
16.
Europe and in particular its southern part are expected to undergo serious climate changes during summer in response to anthropogenic forcing, with large surface warming and decrease in precipitation. Yet, serious uncertainties remain, especially over central and western Europe. Several mechanisms have been suggested to be important in that context but their relative importance and possible interplays are still not well understood. In this paper, the role of soil-atmosphere interactions, cloud-temperature interactions and land–sea warming contrast in summer European climate change and how they interact are analyzed. Models for which evapotranspiration is strongly limited by soil moisture in the present climate are found to tend to simulate larger future decrease in evapotranspiration. Models characterized by stronger present-day anti-correlation between cloud cover and temperature over land tend to simulate larger future decrease in cloud cover. Large model-to-model differences regarding land–sea warming contrast and its impacts are also found. Warming over land is expected to be larger than warming over sea, leading to a decrease in continental relative humidity and precipitation because of the discrepancy between the change in atmospheric moisture capacity over land and the change in specific humidity. Yet, it is not true for all the models over our domain of interest. Models in which evapotranspiration is not limited by soil moisture and with a weak present-day anti-correlation between cloud cover and temperature tend to simulate smaller land surface warming. In these models, change in specific humidity over land is therefore able to match the continental increase in moisture capacity, which leads to virtually no change in continental relative humidity and smaller precipitation change. Because of the physical links that exist between the response to anthropogenic forcing of important impact-related climate variables and the way some mechanisms are simulated in the context of present-day variability, this study suggests some potentially useful metrics to reduce summer European climate change uncertainties. 相似文献
17.
The behavior of the water cycle in the Coupled Forecast System version 2 reforecasts and reanalysis is examined. Attention is focused on the evolution of forecast biases as the lead-time changes, and how the lead-time dependent model climatology differs from the reanalysis. Precipitation biases are evident in both reanalysis and reforecasts, while biases in soil moisture grow throughout the duration of the forecasts. Locally, the soil moisture biases may shrink or reverse sign. These biases are reflected in evaporation and runoff. The Noah land surface scheme shows the necessary relationships between evaporation and soil moisture for land-driven climate predictability. There is evidence that the atmospheric model cannot maintain the link between precipitation and antecedent soil moisture as strongly as in the real atmosphere, potentially hampering prediction skill, although there is better precipitation forecast skill over most locations when initial soil moisture anomalies are large. Bias change with lead-time, measured as the variance across ten monthly forecast leads, is often comparable to or larger than the interannual variance. Skill scores when forecast anomalies are calculated relative to reanalysis are seriously reduced over most locations when compared to validation against anomalies based on the forecast model climate at the corresponding lead-time. When all anomalies are calculated relative to the 0-month forecast, some skill is recovered over some regions, but the complex manner in which biases evolve indicates that a complete suite of reforecasts would be necessary whenever a new version of a climate model is implemented. The utility of reforecast programs is evident for operational forecast systems. 相似文献
18.
As improved and accumulated satellite records become available,it is significant to provide up-to-date perspectives on the spatiotemporal signatures of tropospheric nitrogen dioxide(NO2)over China,the knowledge of which is helpful for air pollution control.In this study,the Ozone Monitoring Instrument NO2 dataset for the last 10 years(2005–14)was retrieved to examine multiple aspects of NO2 columns,including distributions,trends,and seasonal cycle.The pattern of average NO2suggests five hotspots with column density higher than 20×1015 molec cm-2:Jing-Jin-Tang;combined southern Hebei and northern Henan;Jinan;the Yangtze River Delta;and the Pearl River Delta.Furthermore,substantial and widespread NO2 growths are distributed over the North China Plain.By contrast,downward trends in NO2 amounts prevail in the megacities of Beijing,Shanghai,and Guangzhou,despite generally high loading levels.Except for the Pearl River Delta,there appears to be temporally consistent behaviors across all regions considered,where NO2 had an abrupt decline during 2008 to 2009,then a drastic increase up to 2013,before beginning to reduce again after 2013.However,the NO2 over the Pearl River Delta is not coevolving with the rest,having experienced a moderate rise from 2005 to 2007,followed by a reduction thereafter.A marked seasonality is apparent,with a maximum in winter and a minimum in summer,regardless of the region.The annual amplitude of NO2 is less pronounced over the Pearl River Delta,whereas the largest range is observed over the combined Southern Hebei and Northern Henan region,induced by enhanced NO2emission in wintertime due to intense domestic heating. 相似文献
19.
Encroachment of trees and shrubs into grasslands and the thicketization of savannas has occurred worldwide over the past century. These changes in vegetation structure are potentially relevant to climatic change as they may be indicative of historical shifts in climate and as they may influence biophysical aspects of land surface-atmosphere interactions and alter carbon and nitrogen cycles. Traditional explanations offered to account for the historic displacement of grasses by woody plants in many arid and semi-arid ecosystems have centered around changes in climatic, livestock grazing and fire regimes. More recently, it has been suggested that the increase in atmospheric CO 2 since the industrial revolution has been the driving force. In this paper we evaluate the CO 2 enrichment hypotheses and argue that historic, positive correlations between woody plant expansion and atmospheric CO 2 are not cause and effect.Please direct all correspondence to the senior author. 相似文献
20.
A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO 2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast. 相似文献
|