首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
拉分盆地是走滑断层系中受拉伸作用形成的断陷盆地.一般在两条平行断层控制下发育.盆地形似菱形,几何形态主要受两条主控走滑断层错距和叠接长度影响.本文以青藏高原东北缘海原断裂带老龙湾拉分盆地第四纪所处的构造环境为基础,参考盆地周围断层几何分布,建立了三维有限元数值模型,模拟该拉分盆地的演化过程;进一步分析了断层力学性质、地壳分层结构等各因素对盆地形成和演化的影响.模拟结果显示,盆地地表沉降伴随有下地壳物质的上涌,此上涌对盆地地表沉降存在阻碍作用.各因素的影响具体表现为:(1)断层力学性质(弹性模量和黏滞系数)越弱,其对构造应力较低的传递效率导致盆地两端差异性运动越明显,从而形成较大的盆地地表沉降和明显的上地壳减薄.(2)平行主控断层的叠接长度反映盆地形成的拉伸作用范围,叠接长度越大,相同的差异性运动在单位面积形成的拉伸应力越小,盆地地表沉降较小.(3)下地壳流变性影响其物质的上涌量,下地壳黏滞系数越小,其对上部拉伸作用的响应越明显,上涌量越大,此上涌对上地壳沉降形成的阻碍作用也越明显.根据老龙湾拉分盆地所处的构造格局,将平行断层的叠接长度取20km,当断层黏滞系数取值为周围基岩的1/10,参考该盆地第四纪构造演化历史,模拟得到的盆地第四纪下沉量与盆地内第四系沉积层厚度在规模上近似,下地壳黏滞系数取值在(2.5~5.0)×1021 Pa·s范围内时,盆地下沉量模拟结果与老龙湾拉分盆地第四系地层厚度吻合较好.  相似文献   

2.
First results are presented of a recent onshore seismic survey complementary to the Valsis-2 Cruise, which consisted of ESP, COP and CDP marine seismic profiles across the Valencia Trough (Western Mediterranean).The marine energy source used was an airgun array of 5800 cubic inch recorded at 2 land stations on the western flank of the Valencia Trough, at distances between 10–120 km.The experiment has resulted in an extended sampling of the deep crustal structure of the eastern Mediterranean flank of the Iberian peninsula, as well as the offshore-onshore transition.Three transverse NW-SE profiles have been interpreted. Local thinning of the sedimentary cover has been determined towards the centre of the basin which, together with the shallow high velocities observed on the southern profile, could be related to volcanic episodes.A seismic continental basement has been found at depths between 3 and 5 km. A thin lower crust (3–5 km) with velocities around 6.8 km/s has been identified in the northern part of the basin. Alternative crustal models considered for the 3 profiles have been tested, not only from arrival times but also from relative amplitude distributions. A first-order Moho discontinuity fits the data best. The welldefined Moho boundary results in energetic PMP reflections, and a clear updoming is observed towards the interior of the basin, from depths about 20–21 km inshore of Barcelona to 15–17 km depths 60 km offshore. An anomalous upper mantle with low Pn velocities of about 7.7 km/s is confirmed in most of the sampled areas.  相似文献   

3.
帕米尔高原位于地中海-喜马拉雅地震带上,晚新生代以来随着印度板块向欧亚板块持续不断地挤压汇聚,其构造运动是欧亚大陆最强烈的地区。高原腹地发育一系列近SN向正断层,包括近SN向的塔什库尔干正断层所处的帕米尔中部现代区域的构造应力场以EW向水平拉张为主。2016年11月25日发生的阿克陶MS 6.7级地震的发震构造为塔什库尔干断层分支的NWW向木吉盆地北缘断层,其具有右旋走滑兼正断性质。地震在震中附近产生同震地表形变带,全长约1km,呈近SN-NNE向水平拉伸,发育近EW—NWW向的张裂缝,为地震破裂的产物,张裂缝的最大水平拉伸位移量和最大垂直位移量分别为46cm和16cm。地表破裂带中的NE和NW向张剪裂缝只是连接贯通这些雁列的张裂缝,其水平相对位移量取决于张裂缝的水平拉伸量和张裂缝之间的几何关系。地表形变带表现的拉张性质与帕米尔高原腹地区域现代应力场最大主压应力为垂直向基本一致,可能与深部热物质上涌造成的上地壳拉伸有关。而地表形变带呈近SN向水平拉张,与区域近EW向拉张应力场之间存在显著差异,这可能是木吉盆地北缘右旋走滑正断层阶区局部应力场调整的结果。  相似文献   

4.
The Red Sea is a modern example of continental fragmentation and incipient ocean formation. Heat flow data have been collected from eastern Egypt to provide information relating to the mode and mechanism of Red Sea opening. Preliminary heat flow data, including new data reported here, are now available from twenty-five sites in eastern Egypt and one site in western Sinai. A pattern of low to normal heat flow (35–55 mW m−2) inland with high heat flow (75–100 mW m−2) in a zone within 30 to 40 km of the coast is indicated.Moderately high heat flow (around 70 mW m−2) is indicated for the Gulf of Suez. The coastal zone thermal anomaly appears continuous with high heat flow previously reported for the Red Sea shelf. Heat production data indicate that the coastal thermal anomaly is not primarily related to crustal radiogenic heat production. The effects of rapid erosion may contribute to the anomaly, but are not thought to be the primary cause of the anomaly. If the anomaly is caused by lateral conduction from hot, extended, offshore lithosphere, the extension must have been active for the last 30 Ma or so, and a minimum of 100% extension is indicated. Alternatively, the anomaly is primarily caused by high mantle heat flow causing lithospheric thinning, centred beneath the Red Sea. The Red Sea is probably underlain by dominantly basic crust, formed either by intrusion into attenuated continental crust or sea-floor spreading, and for most purposes the crust formed in these two modes of extension may be essentially indistinguishable. Fission-track ages from eastern Egypt indicate that uplift started prior to, or at latest at the time of initial Red Sea opening, and this result, together with thermo-mechanical considerations, suggests an active asthenospheric upwelling beneath the Red Sea and high temperature in the lithosphere prior to extension.  相似文献   

5.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

6.
This study is based on the detailed geometry of the Hokkaido Wadati-Benioff zone and the paleosubduction zone as delineated by Hanus and Vanek (1984). The used data includes 217 CMT Harvard solutions for earthquakes, which belong to the Wadati-Benioff zone and 13 for the paleosubduction zone. The inverse technique by Gephart and Forsyth (1984) was incorporated for determining the best fit principal stress directions σ1, σ2, σ3 and the ratio (R2−σ13−σ1) for 20 km depth intervals in the Wadati-Benioff zone and for the paleosubduction zone considered as a single body. In almost all the considered depth layers, the maximum compressive stress σ1 is normal to the strike of the slab and dips less than 25°, indicating the NW-SE convergence between the Pacific and Eurasian lithospheric plates. Exceptions are in the depth layer 81–120 km, the paleosubduction zone with steeply dipping along-strike σ1, and the lower part of the subduction zone (161–220 km) where σ1 is almost horizontal and of E trend. The minimum compressive stress σ3 is mostly along-strike and of a different dip with the exception of the 21–60 km layer wher they are down-dipping. The results obtained for the depth ranges 0–20 km, 81–100 km, 121–160 km, and the paleosubduction zone indicate heterogeneous stress fields. These results show that the slab pull and the mantle resistance, acting on the slab edge, are not the main forces which control the contemporary plate tectonics in the Hokkaido region. Along-strike compression at depths 81–120 km and along-strike extension at 0–20 and 61–220 km are involved in the slab dynamics. These can be related to horizontal bending of the subducting Pacific plate.  相似文献   

7.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

8.
Submersible investigations along the East Rift segments, the Pito Deep and the Terevaka transform fault of the Easter microplate eastern boundary, and on a thrust-fault area of the Nazca Plate collected a variety of basalts and dolerites. The volcanics consist essentially of depleted (N-MORB), transitional (T-MORB) and enriched (E-MORB) basalts with low (0.01−0.1, < 0.7), intermediate (0.12–0.25, 0.7–1.2) and high (> 0.25, > 1.2–2) K/Ti and(La/Sm)N ratios, respectively. The Fe-Ti-rich ferrobasalt encountered among the N-MORBs are found on the Pito Deep Central volcano, on the Terevaka intra-transform ridge, on the ancient (< 2.5 Ma) Easter microplate (called EMP, comprising the East Rift Inner pseudofaults and Pito Deep west walls) and on thrust-fault crusts. The most enriched (T- and E-MORB) volcanics occur along the East Rift at 25 °50′–27 °S (called 26 °S East Rift) and on the Pito seamount located near the tip of the East Rift at 23 °00′–23 °40′S (called 23 °S East Rift). The diversity in incompatible element ratios of the basalts in relation to their structural setting suggests that the volcanics are derived from a similar heterogenous mantle which underwent variable degrees of partial melting and magma mixing. In addition the Pito seamount volcanics have undergone less crystal fractionation (< 20%) than the lavas from the other Easter microplate structures (up to 35–45%). The tectonic segmentation of the East Rift observed between 23 and 27 °S corresponds to petrological discontinuities related to Mg# variations and mantle melting conditions. The highest Mg# (> 61) are found on topographic highs (2000–2300 m) and lower values (Mg# < 56) at the extremities of the East Rift segments (2500–5600 m depths). The deepest area (5600 m) along the East Rift is located at 23 °S and coincides with a Central volcano constructed on the floor of the Pito Deep. Three major compositional variabilities of the volcanics are observed along the East Rift segments studied: (1) the 26 °S East Rift segment where the volcanics have intermediate Na8 (2.5–2.8%) and Fe8 (8.5–11%) contents; (2) the 23 °S East Rift segment (comprising Pito seamount and Pito Deep Central volcano) which shows the highest (2.9–3.4%) values of Na8 and a low (8–9%) Fe8 content; and (3) the 25 °S (at 24 °50′–26 °10′S) and the 24 °S (at 24 °10′–25 °S) East Rift segments where most of the volcanics have low to intermediate Na8 (2.6–2.0%) and a high range of Fe8 (9–13%) contents. When modeling mantle melting conditions, we observed a relative increase in the extent of partial melting and decreasing melting pressure. These localized trends are in agreement with a 3-D type diapiric upwelling in the sense postulated by Niu and Batiza (1993). Diapiric mantle upwelling and melting localized underneath the 26, 25 and 23 °S (Pito seamount and Central volcano) East Rift segments are responsable for the differences observed in the volcanics. The extent of partial melting varies from 14 to 19% in the lithosphere between 18 and 40 km deep as inferred from the calculated initial (Po=16kbar) and final melting (Pf=7kbar) pressures along the various East Rift segments. The lowest range of partial melting (14–16%) is confined to the volcanics from 23 °S East Rift segment including the Pito seamount and the Central volcano. The Thrust-fault area, and the Terevaka intra-transform show comparable mantle melting regimes to the 25 and 26 °S East Rift segments. The older lithosphere of the EMP interior is believed to have been the site of high partial melting (17–20%) confined to the deeper melting area (29–50 km). This increase in melting with increasing pressure is similar to the conditions encountered underneath the South East Pacific Rise (13–20 °S).  相似文献   

9.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

10.
松辽盆地岩石圈减薄的深部动力学过程   总被引:4,自引:0,他引:4       下载免费PDF全文
松辽盆地作为东亚裂谷系的一部分,与华北克拉通一起经历了中生代岩石圈减薄的重大地质事件.对大陆岩石圈-软流圈状态和构造的整体认识,是研究大陆岩石圈减薄深部动力学过程的关键.在获得过松辽盆地的106个宽频和30个长周期大地电磁测深数据的基础上,完成测点数据二维偏离度、构造走向等计算与分析,进一步采用非线性共轭梯度算法,对TE和TM模式数据进行二维联合反演,获得了沿剖面的壳-幔电性结构,并依此构建了松辽盆地壳-幔结构模型.研究结果表明:(1)大兴安岭地区岩石圈厚度约为160 km,松辽盆地岩石圈厚度约为45 km,张广才岭岩石圈厚度在70~100 km之间,莫霍面与岩石圈底界面不呈镜像关系.软流圈整体表现为中、低阻异常,电阻率值在30 Ωm左右,其形态呈西倾约30°的蘑菇状异常,指示了软流圈物质上涌的形式,有别于软流圈垂直上涌的传统认识.(2)松辽盆地深部存在双层高导异常(电阻率小于5 Ωm),上层为壳内高导层,呈"蛇"状分布,推断为岩浆底侵区,下层为幔内高导层,呈"哑铃"状,为软流圈上涌区.软流圈内存在两个"哑铃"状中、高阻异常,推断为拆沉的岩石圈地幔.具有冷的、高密度的下降物质流的堆积以及拆沉块体下插到两侧山岭是促使大兴安岭与张广才岭在中生代伸展环境中快速隆升重要原因;(3)松辽盆地经历了岩石圈减薄事件,与大兴安岭岩石圈厚度相比,松辽盆地岩石圈厚度减薄了近100 km,与东侧张广才岭相比减薄了70 km,而与中生代华北地台100 km的岩石圈厚度相比,减薄了近50 km,其经历了岩石圈伸展期、裂解期、拆沉期和增长期的动力学过程.  相似文献   

11.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

12.
The pattern of b-value of the frequency–magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b=1.3–1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5–8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b=0.5), suggesting faulting in a more homogeneous medium.  相似文献   

13.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

14.
This study is focused on a plagioclase‐bearing spinel lherzolite from Chah Loqeh area in the Neo‐Tethyan Ashin ophiolite. It is exposed along the west of left‐lateral strike‐slip Dorouneh Fault in the northwest of Central‐East Iranian Microcontinent. Mineral chemistry (Mg#olivine < ~ 90, Cr#clinopyroxene < ~ 0.2, Cr#spinel < ~ 0.5, Al2O3orthopyroxene > ~ 2.5 wt%, Al2O3clinopyroxene > ~ 4.5 wt%, Al2O3spinel > ~ 41.5 wt%, Na2Oclinopyroxene > ~ 0.11 wt%, and TiO2clinopyroxene > ~ 0.04 wt%) confirms Ashin lherzolite was originally a mid‐oceanic ridge peridotite with low degrees of partial melting at spinel‐peridotite facies in a lithospheric mantle level. However, some Ashin lherzolites record mantle upwelling and tectonic exhumation at plagioclase‐peridotite facies during oceanic extension and diapiric motion of mantle along Nain‐Baft suture zone. This mantle upwelling is evidenced by some modifications in the modal composition (i.e. subsolidus recrystallization of plagioclase and olivine between pyroxene and spinel) and mineral chemistry (e.g. increase in TiO2 and Na2O of clinopyroxene, and TiO2 and Cr# of spinel and decrease in Mg# of olivine), as a consequence of decompression during a progressive upwelling of mantle. Previous geochronological and geochemical data and increasing the depth of subsolidus plagioclase formation at plagioclase‐peridotite facies from Nain ophiolite (~ 16 km) to Ashin ophiolite (~ 35 km) suggest a south to north closure for the Nain‐Baft oceanic crust in the northwest of Central‐East Iranian Microcontinent.  相似文献   

15.
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3–5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.  相似文献   

16.
The preliminary research results of vertical deformation dislocation model of GongheM S =6.9 earthquake show that, the causative structure is a hidden fault with strike N60°W, dipping S47°W, which lies near the current subsidence center of Gonghe basin. The rupture length and width are 30km and 14km, the upper and lower bound depth of the fault in width direction are 3km and 17km respectively. The maximum coseismic and preseismic vertical deformation of GongheM S =6.9 earthquake are 247mm and about 100mm. The reasons why there existed rapid postseismic uplift are also given a tentative discussion. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 289–295, 1993.  相似文献   

17.
Subsidence of the Bahama Escarpment, determined from deep-diving submersible and dredge samples, is used to constrain the nature of crust underlying the Bahamas. Horizontal disposition of the Hauterivian/Barremian (125 Ma) age boundary along the Bahama Escarpment is inconsistent with an underlying oceanic crust (either normal or thickened) here, and suggests that thinned continental crust underlies the Bahamas. Subsidence curves are then fit based on a stretched lithosphere model to a stratigraphic section (2000–4000 m) off Cat Island. This analysis indicates crustal thinning by a factor (β) of 2.0–2.5, resulting in present crustal thicknesses of 10–12 km. We propose that rifting beneath the Bahamas occurred from middle (175–180 Ma) to late (160 Ma) Jurassic time. The pre-extension Bahamas fit between North and South America and Africa in Early Jurassic time, eliminating overlap of the present Bahamas onto Africa in reconstructions of the North Atlantic.  相似文献   

18.
基于南海北部大陆边缘珠江口—琼东南盆地深水区实施的14条近垂直深反射地震探测叠加速度谱,利用Dix公式将叠加速度剖面转换为地壳层速度剖面,并利用时深转换方法构建了深度域地壳层速度模型,综合各地壳速度剖面分析了南海北部大陆边缘珠江口与琼东南盆地不同深度层次的P波速度变化趋势以及地壳几何分层特征.结果表明,琼东南盆地区可分为4~8 km沉积层(VP为1.7~4.7 km/s)、4~10 km厚的上地壳层(VP为5.2~6.3 km/s)、5 km〗左右的下地壳层(VP为6.4~7.0 km/s)以及2~6 km厚的高速下地壳底层(VP>7.0 km/s).VP>7.0 km/s下地壳高速层的存在被认为是岩石圈伸展、下地壳底部底辟构造或者是残存的原始华夏下地壳基性层的地震学指示;综合研究区地球物理探测成果构建了跨越华南大陆与南海北部陆坡区剖面莫霍和岩石圈底界图像,揭示出岩石圈上地幔在华南大陆与南海北部大陆边缘的减薄特征.  相似文献   

19.
Experimental data show that in East Siberia resistivity curves, irrespective of their trends, are affected by galvanic (local) distortions. The preliminary step of the magnetotelluric data processing is to obtain a steady shape of resistivity curves reflecting a true deep section. For this purpose statistical averaging and different criteria of impedance rejecting were used. The available MTS curves were normalized by level to the global magnetovariation curves. Two-dimensional modelling was performed from several sublatitudinal profiles crossing the Baikal rift zone. Three-dimensional models based on two-dimensional modelling and on induction vector distribution have been computed via programs of M. N. Yudin. Following other researchers, two conductive layers are distinguished: i) the mid- and low crustal and ii) the mantle one, with the layer surface uplifted from 100–110 km depth in the southern Baikal rift zone to 60–70 km northeastwards along the eastern Baikal coast. The top of this layer seems to correspond to the asthenospheric roof. The asthenosphere deepening in southern BRZ is likely to be related to a decrease in the asthenospheric bulge width and an increase in the rate of lithospheric thickening with mantle degasing. The origin and evolution of the Baikal rift is considered, proceeding from the model of passive rifting with regard to a long-existing lithospheric inhomogeneity between the Siberian platform and the Sayan-Baikal folded area.  相似文献   

20.
The static displacement field of the Athens 1999 earthquake has been numerically modeled by a BEM method and analysed from SAR interferometry images with compatible results: (a) for a fault that reaches the surface the subsidence field coincides with the hangingwall domain of the Fili neotectonic normal fault with maximum amplitude, d max, 5.5–7 cm, which is consistent with the possibly co-seismic displacement of 6–10 cm observed in the field, the average fault dislocation of 5–8 cm found by the application of circular source models, and the displacement up to 6 cm predicted by empirical relations between magnitude and displacement; the field of uplift covers the footwall domain of the fault with d max1.5 cm;d gradually decreases with distance from the fault at a gradient of 0.4 cm/km, (b) for a blind fault d max is only 1.8 and 0.3 cm in the hangingwall and footwall, respectively, and the decay gradient becomes 0.15 cm/km, (c) the total deformation area is 15 km × 15 km and the Fili fault, with a preferred mean dip of 60°, constitutes the natural boundary between the subsidence and uplift areas. The macroseismic field pattern is similar with that of the static ground deformation. The majority of intensity values VI (MM and EMS-98 scales), are distributed within the hangingwall of the Fili fault, while the highest intensities (VIII and IX) concentrate very close to the Fili fault within its hangingwall domain. A gradual decrease of the intensities with the distance from the Fili fault is evident. Because of the similarity between the intensity distribution pattern and the static ground deformation pattern, we make the hypothesis that the latter predicts well enough the main characteristics of the former although the ground displacement is dominated by relatively low frequency as compared to the ground acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号