首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   

2.
The northern fold belt away from the Singhbhum Shear Zone displays a set of folds on bedding. The folds are sub-horizontal with E-W to ESE striking steep axial surfaces. In contrast, the folds in the Singhbhum Shear Zone developed on a mylonitic foliation and have a reclined geometry with northerly trending axes. There is a transitional zone between the two, where the bedding and the cleavage have become parallel by isoclinal folding and two sets of reclined folds have developed by deforming the bedding—parallel cleavage. Southward from the northern fold belt the intensity of deformation increases, the folds become tightened and overturned towards the south while the fold hinges are rotated from the sub-horizontal position to a down-dip attitude. Recognition of the transitional zone and the identification of the overlapping character of deformation in the shear zone and the northern belt enable the formulation of a bulk kinematic model for the area as a whole.  相似文献   

3.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

4.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

5.
The structures across the Lambian Unconformity near Taralga show evidence of two, and possibly three, significant episodes of folding. The first, Early to Middle Silurian folding is poorly defined, but may be responsible for initial dips that are reflected in the more complex deformation patterns in the Late Ordovician than in the overlying younger rocks. The second, mid‐Devonian folding produced upright folds trending 10° west of north, and the last, latest Devonian to Early Carboniferous folding produced the meridional Cookbundoon Synclinorium and the regional cleavage. No cleavage was associated with the first two episodes of folding in the area studied. The angular discordance across the Lambian Unconformity caused by mid‐Devonian folding is much greater than in the northeastern Lachlan Fold Belt, and reflects the increasing intensity of mid‐Devonian folding southward. The tight, slightly overturned profile of the Cookbundoon Synclinorium reflects an intensity of latest Devonian to Early Carboniferous folding similar to that found in the northeastern Lachlan Fold Belt, but the intensity of this folding decreases further south.  相似文献   

6.
The Thomson Orogen forms the northwestern segment of the Tasman Orogenic Zone. It was a tectonically active area with several episodes of deposition, deformation and plutonism from Cambrian to Carboniferous time.Only the northeastern part of the orogen is exposed; the remainder is covered by gently folded Permian and Mesozoic sediments of the Galilee, Cooper and Great Artesian Basins. Information on the concealed Thomson Orogen is available from geophysical surveys and petroleum exploration wells which have penetrated the Permian and Mesozoic cover.The boundaries of the Thomson Orogen with other tectonic units are concealed, but discordant trends suggest that they are abrupt. To the west, the orogen is bordered by Proterozoic structural blocks which form basement west of the northeast-trending Diamantina River Lineament. The most appropriate boundary with the Lachlan and Kanmantoo Orogens to the south is an arcuate line marking a distinct change in the direction of gravity trends. The north-northwest orientation of the northern part of the New England Orogen to the east cuts strongly across the dominant northeast trend of the Thomson Orogen.The Thomson Orogen developed as a tectonic entity in latest Proterozoic or Early Cambrian time when the former northern extension of the Adelaide Orogen * was truncated along the Muloorinna Ridge. Early Palaeozoic deposition was dominated by finegrained, quartz-rich clastic sediments. Cambrian carbonates accumulated in the southwest and a Cambro-Ordovician island arc was active in the north. Along the western margin of the orogen, sediments were probably laid down on downfaulted blocks of deformed Proterozoic rocks, with oceanic crust further to the east.A mid- to Late Ordovician orogeny which affected the whole of the Thomson Orogen marked the climax of its precratonic (orogenic) stage. The northeast structural trend of the orogen (parallel to its western boundary with the Precambrian craton) was imposed at this time and has controlled the orientation of later folding and faulting. Up to three generations of folding have been recognized and fine-grained metasediments exhibit a prominent slaty cleavage. Metamorphism was to the greenschist and amphibolite facies, the highest grade rocks being associated with synorogenic granodiorite batholiths in the north. Following deposition of Late Ordovician marine sediments at the eastern margin, emplacement of post-tectonic Late Silurian or Early Devonian batholiths ended the precratonic history of the Thomson Orogen.The subsequent transitional tectonic regime was characterized by deposition of Devonian to Early Carboniferous shallow marine and continental sediments including widespread red-beds and andesitic volcanics. The maximum marine transgression occurred in the early Middle Devonian. Localized folding affected the easternmost part of the Thomson Orogen at the end of Middle Devonian time and was followed by intrusion of Devono-Carboniferous granitic plutons. However, the terminal orogeny which deformed all Devonian to Early Carboniferous rocks of the orogen was of mid-Carboniferous age. It produced northeast-trending open folds and normal and high-angle reverse faults which are considered to reflect basement structures. The cratonization of the Thomson Orogen was completed with the emplacement of Late Carboniferous granites and the eruption of comagmatic volcanics in the northeast, permian and Mesozoic sediments accumulated in broad, relatively shallow down warps which covered most of the former orogen.  相似文献   

7.
《地学前缘(英文版)》2019,10(6):2101-2115
Veins and dikes are often oriented subparallel to the axial surfaces of folds in the adjacent layered or foliated rocks.This implies an awkward situation,since veins would lay in planes close-to-parallel to the maximum stretching axis.A series of geometric models have been conceived in order to gain insight into the possible mechanisms for their formation.The models are based on the analysis of a varied selection of field structures and on the review of similar structures in the existing literature.A first categorization consists on distinguishing between axial-planar veins achieved by either progressive or polyphase deformation.Five models of axial-planar veins resulting from progressive deformation are described and discussed:(1) fold-related veins associated with the standard folding mechanisms,(2) fracture arrays localized along the short limbs of folds(asymmetric fold-related veins),(3) folds associated with rotation of extension veins(vein-related folds),(4) high strain and transposition of early veins,and(5) high strain and late veins parallel to axial planar foliations(axial planar foliation-related veins).The axial planar geometry is achieved through variable amounts of progressive rotational strain,except in model 5,in which the co-planarity is acquired at the time of vein intrusion.The possibility for axial-planar veins to have developed in two distinct phases in the context of polyphase or polyorogenic tectonics has also been explored and discussed.This study contributes to a better understanding of the intriguing interplays between deformation,metamorphic and magmatic processes in orogenic belts.  相似文献   

8.
A non-coaxial deformation involving pre-folding initiation of cleavage perpendicular to bedding is proposed to explain non-axial planar cleavage associated with mesoscopic folds in part of the Appalachian foreland thrust-belt of southwest Virginia. Folds are gently plunging, asymmetric, upright to slightly inclined, sinusoidal forms with non-axial fanning cleavage. They show extreme local variations in type and degree of transection and the consistency of transection direction. These relations are further complicated by hinge migration.Cleavage-fan angles, bedding-cleavage angles and δ transection values appear influenced by fold tightness, and in part by fold flattening strain. Fold flattening increments are considered simultaneous with folding. Axial surface traces, and not cleavage traces, coincide with the principal extension direction in fold profiles. Geometric modelling of cleavage fanning and bedding-cleavage angle variations for various theoretical folding modes suggest that folding in limestone and sandstone layers was by tangential longitudinal strain. Significant shape modification and change in bedding-cleavage relations occurred after limb dips of 40 and 50° were attained in limestone and sandstone respectively. Mud-rock class 1C folds with convergent cleavage fans show features transitional between buckling and flexural flow. Initiation of ‘cleavage’ fabrics during layer-parallel shortening prior to significant folding may be important for cleavage evolution in some deformed rocks.  相似文献   

9.
Boudins with long axes (BA) oriented subnormal to bedding and to associated fold axes are observed in folded rocks in a thrust sheet exposed near the base of a regionally extensive allochthon in west-central Nevada, USA. Formation of the boudins is related to development of a regional fold-set coeval with major thrusting. The axes of boudins lie at a high angle to bedding, and in some instances, boudins define tight to isoclinal folds which are geometrically associated with the regional deformation. Quartz c-axis fabrics from oriented thin-sections of the boudins indicate extension parallel to the boudin axes (BA).

These relations and other mesoscopic structural data indicate a complex deformational history for boudin development. The history involves thin layers (to become boudins) deformed in folds disharmonic to major structures within the thrust sheet followed by flattening and associated extension parallel to fold axes. During flattening, arcuation occurred within the deforming mass resulting in rotation of fold axes and boudin axes (BA) toward the axis of finite extension (X). Extension parallel to BA recorded in the petrofabrics of boudins records incremental strain axes oriented at a high angle (50°) to the finite X and is probably related to an early plane-strain state associated with disharmonic folding. The finite extension (X) is down-dip in axial planes of major folds formed during thrusting and indicates a northwest to southeast transport for the thrusts.  相似文献   


10.
The main outlines of the geology of the Variscan part of the Pyrenees are discussed. Rocks involved in this cycle are high-grade basement gneisses, Palaeozoic sediments and their metamorphic equivalents, late intrusive granodiorites and early, pre-Variscan granites. The main features of the stratigraphy of the Palaeozoic are given.Structures fall into two domains: a low-grade suprastructure, essentially with steep folds and cleavages, and a high-grade infrastructure with dominantly low-dipping foliations. An important phase of early, pre-cleavage folding occurs in low-grade rocks mainly along the southern border of the Axial zone. In high-grade rocks most structures and the metamorphism postdate the main cleavage phase in low-grade rocks. The influence of the Alpine orogeny on the Variscan structures consists mainly of faults, steep, reverse faults in the northern, and south-directed thrusts in the southern part of the Pyrenees. Metamorphism took place under high geothermal gradients and low pressures, as indicated by the abundant occurrence of andalusite and cordierite  相似文献   

11.
大巴山西北缘叠加褶皱研究   总被引:11,自引:0,他引:11  
张忠义 《地质学报》2009,83(7):923-936
大巴山晚侏罗纪叠加褶皱可能是世界上区域规模或填图规模最典型的褶皱叠加构造之一,具有完美的干涉图像。作者在两期褶皱近乎正交的大巴山西北缘开展1/万填图和构造分析,重点研究露头尺度上的横跨褶皱的几何学、运动学特征。厘定了晚三叠世和晚侏罗世两期构造运动及其两期褶皱变形,确定地壳浅层发育的纵弯褶皱机制,在三维几何形态研究基础上,特别是根据同褶皱层间滑动线理的几何学和运动学及其相互配置关系,基于叠加褶皱力学作用方式和变形干涉图像将区内叠加褶皱划分为3类10种基本样式。研究表明晚侏罗世近南北-北北西向褶皱(F2)近垂直地跨过晚三叠世近东西-北东向褶皱(F1),是大巴山地区最主要的定型构造,构成大巴山晚侏罗纪弧形前陆褶皱山系主体;而北西向褶皱(F3)与近南北-北北西向褶皱(F2)在其中-西部以小的角度相交,总体具非共轴的旋转应变特征,并主要表现为并置或重褶作用。  相似文献   

12.
Evolution of the southeastern Lachlan Fold Belt in Victoria   总被引:2,自引:2,他引:0  
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian.  相似文献   

13.
Low-grade metamorphic rocks of Paleozoic–Mesozoic age to the north of Konya, consist of two different groups. The Silurian–Lower Permian Sizma Group is composed of reefal complex metacarbonates at the base, and flyschoid metaclastics at the top. Metaigneous rocks of various compositions occur as dykes, sills, and lava flows within this group. The ?Upper Permian–Mesozoic age Ardicli Group unconformably overlies the Sizma Group and is composed of, from bottom to top, coarse metaclastics, a metaclastic–metacarbonate alternation, a thick sequence of metacarbonate, and alternating units of metachert, metacarbonates and metaclastics. Although pre-Alpine overthrusts can be recognized in the Sizma Group, intense Alpine deformation has overprinted and obliterated earlier structures. Both the Sizma and Ardicli Groups were deformed, and metamorphosed during the Alpine orogeny. Within the study area evidence for four phases of deformation and folding is found. The first phase of deformation resulted in the major Ertugrul Syncline, overturned tight to isoclinal and minor folding, and penetrative axial planar cleavage developed during the Alpine crustal shortening at the peak of metamorphism. Depending on rock type, syntectonic crystallization, rotation, and flattening of grains and pressure solution were the main deformation mechanisms. During the F2-phase, continued crustal shortening produced coaxial Type-3 refolded folds, which can generally be observed in outcrop with associated crenulation cleavage (S2). Refolding of earlier folds by the noncoaxial F3-folding event generated Type-2 interference patterns and the major Meydan Synform which is the largest map-scale structure within the study area. Phase 3 structures also include crenulation cleavage (S3) and conjugate kink folds. Further shortening during phase 4 deformation also resulted in crenulation cleavage and conjugate kink folds. According to thin section observations, phases 2–4 crenulation cleavages are mainly the result of microfolding with pressure solution and mineral growth.  相似文献   

14.
Felsite-microgranite dykes, chemically comparable with the Shap swarm and associated with the Shap intrusion, are present in Silurian sediments of the southern Lake District. They were emplaced after the country rocks had undergone Acadian (late Caledonian) folding and cleavage-formation but are themselves weakly cleaved. This confirms a ‘flattened buckle’ model for the Acadian deformation in NW England, which in turn establishes the link between sinistral transpression in this region and the clockwise transection of the folds by cleavage. The evidence also shows that the Acadian cleavage developed episodically, and that the Shap-Skiddaw magmatism occurred during one or more stress-relief episodes. The emplacement age of these intrusions thus constrains the age of the Acadian orogeny in NW England which was late in the Lower Devonian (according to currently available isotopic evidence), significantly later than the Silurian deformation of the Southern Uplands.  相似文献   

15.
Several models of basin inversion described in the literature are tested in a study of Triassic and Early Jurassic strata exposed along the southern margin of the Bristol Channel Basin in Somerset, England that has been exhumed by <3 km. Two key features of the superbly exposed normal faults are that they formed at several times during basin evolution—not during Triassic to Early Jurassic growth, but during Late Jurassic rifting, and during and after inversion; and that >95% of them are still in net extension, despite widespread kinematic evidence for reverse reactivation. When coupled with the general absence of thin-skinned thrusts and the widespread occurrence of regional contractional folds, it appears that none of three main inversion models—the fault-reactivation model, the thin-skinned model and the buttress model—are by themselves applicable. We erect a new model of basin inversion, the distributed deformation model, which consists of three stages of basin inversion. Stage one involved early partial reactivation of large-displacement steep normal faults. Stage two was dominated by folding, wherein fault blocks underwent oblique (non-coaxial) shortening by map scale folding, accompanied by formation of outer arc normal faults, minor cleavage and neoformed thrusts. Stage three involved reverse reactivation of outer arc normal faults and activation of oblique and strike-slip faults that partitioned deformation into compartments.  相似文献   

16.
秦岭南缘大巴山褶皱-冲断推覆构造的特征   总被引:14,自引:0,他引:14  
董云鹏  查显峰  付明庆  张茜  杨钊  张燕 《地质通报》2008,27(9):1493-1508
秦岭造山带南缘的大巴山巨型逆冲推覆构造主要是在秦岭造山带板块俯冲碰撞造山与中、新生代以来陆内造山过程中长期复合作用形成的。详细的室内外构造研究表明,巴山逆冲推覆构造可以巴山弧形断裂带为界划分为北大巴山逆冲推覆构造和南大巴山逆冲推覆构造。北大巴山自北而南依次由安康-武当推覆体、紫阳-平利推覆体、高桥-镇坪推覆体和高滩推覆体逆冲叠置而成。南大巴山则以镇巴-阳日断裂为界,分为北部的前陆冲断褶皱带和南部的前陆褶皱带。北大巴山主要是印支期碰撞造山作用和燕山期陆内逆冲推覆作用叠加改造的结果,南大巴山则主要是燕山期递进变形过程中的产物。构造变形北强南弱,北以冲断褶皱变形为特征,南以皱褶作用为主;北部褶皱紧闭复杂,向南渐变为宽缓的薄皮构造。逆冲作用在时序上具有由北向南扩展传递的特点。  相似文献   

17.
前人认为皖南地区加里东运动仅表现为抬升造陆运动.文中从构造运动不整合接触关系证据、盖层构造、劈理及变形变质程度,以及古构造应力场特征等方面开展研究.于皖南地区多处发现了上泥盆统与下伏志留系呈角度不整合接触,表明了区内发育加里东褶皱.通过区域地质调查和构造解剖,揭示了区内复式褶皱为加里东和印支两期褶皱叠加的产物.其中,加里东期构造样式主要为区域性开阔褶皱,规模巨大,其轴迹呈北东东向或近东西向延伸,然而,印支期构造样式为线性中常褶皱,规模较小,其轴迹主要呈北东向展布.应用赤平极射投影法对研究区内的褶皱轴面产状、劈理产状要素进行统计分析,结果显示发育加里东期、印支期等多期变形构造;并利用该法求得褶皱两翼优势产状,应用数学计算法计算出区内3期构造应力场特征值,显示华南地块自南而北向扬子地块俯冲挤压的陆内造山动力学过程.早古生代盖层造山属性为陆内造山.区内加里东期褶皱构造属性的厘定和深入研究,对区域构造格架的建立具有重要意义.  相似文献   

18.
The development of structural elements and finite strain data are analysed to constrain kinematics of folds and faults at various scales within a Proterozoic fold-and-thrust belt in Pranhita-Godavari basin, south India. The first order structures in this belt are interpreted as large scale buckle folds above a subsurface decollement emphasizing the importance of detachment folding in thin skinned deformation of a sedimentary prism lying above a gneissic basement. That the folds have developed through fixed-hinge buckling is constrained by the nature of variation of mesoscopic fabric over large folds and finite strain data. Relatively low, irrotational flattening strain (X:Z-3.1-4.8, k<1) are associated with zones of near upright early mesoscopic folds and cleavage, whereas large flattening strain (X:Z-3.9-7.3, k<1) involving noncoaxiality are linked to domains of asymmetric, later inclined folds, faults and intense cleavage on the hanging wall of thrusts on the flanks of large folds. In the latter case, the bulk strain can be factorized to components of pure shear and simple shear with a maximum shearing strain of 3. The present work reiterates the importance of analysis of minor structures in conjunction with strain data to unravel the kinematic history of fold-and-thrust belts developed at shallow crustal level.  相似文献   

19.
The general structure of the Chinese Altai has been traditionally regarded as being formed by five tectono-stratigraphic ‘terranes’ bounded by large-scale faults. However, numerous detrital zircon studies of the Paleozoic volcano-sedimentary sequences shown that the variably metamorphosed Cambro-Ordovician sequence, known as the Habahe Group, is present at least in four ‘terranes’. It structurally represents deepest rocks unconformably covered by Devonian and Carboniferous sedimentary and volcanic rocks. Calc-alkaline, mostly Devonian, granitoids that intruded all the terranes revealed their syn-subduction related setting. Geochemistry and isotope features of the syn-subduction granitoids have shown that they originated mainly from the melting of youthful sediments derived from an eroded Ordovician arc further north. In contrast, Permian alkaline granitoids, mostly located in the southern part of the Chinese Altai, reflect a post-subduction intraplate setting. The metamorphic evolution of the metasedimentary sequences shows an early MP-MT Barrovian event, followed by two Buchan events: LP-HT mid-Devonian (ca. 400–380 Ma) and UHT-HT Permian (ca. 300–270 Ma) cycles. The Barrovian metamorphism is linked to the formation of a regional sub-horizontal possibly Early Devonian fabric and the burial of the Cambro-Ordovician sequence. The Middle Devonian Buchan type event is related to intrusions of the syn-subduction granitoids during an extensional setting and followed by Late Devonian-Early Carboniferous NE-SW trending upright folding and crustal scale doming during a general NW-SE shortening, responsible for the exhumation of the hot lower crust. The last Permian deformation formed NW-SE trending upright folds and vertical zones of deformation related to the extrusion of migmatites, anatectic granitoids and granulite rocks, and to the intrusions of gabbros and granites along the southern border of the Chinese Altai. Finally, the Permo-Triassic cooling and thrust systems affected the whole mountain range from ca. 265 to 230 Ma. In conclusion, the Chinese Altai represents different crustal levels of the lower, middle and upper orogenic crust of a single Cambro-Ordovician accretionary wedge, heterogeneously affected by the Devonian polyphase metamorphism and deformation followed by the Permian tectono-thermal reworking event related to the collision with the Junggar arc. It is the interference of Devonian and Permian upright folding events that formed vertical boundaries surrounding the variously exhumed and eroded crustal segments. Consequently, these crustal segments should not be regarded as individual suspect terranes.  相似文献   

20.
Fault-slip data are used to reconstruct varying tectonic regimes associated with transverse fold development along the eastern and southern margins of the Jaca basin, southern Pyrenees, Spain. The Spanish Pyrenean foreland consists of thrust sheets and leading-edge décollement folds which developed within piggyback basins. Guara Formation limestones on the margins of the Jaca basin were deposited synchronously with deformation and are exposed in the External Sierra. Within the transverse folds, principal shortening axes determined from P and T dihedra plots of fault-slip data show a shift from steep shortening in stratigraphically older beds to NNE–SSW horizontal shortening in younger beds. Older strata are characterized by extensional faults interpreted to result from halotectonic (salt tectonics) deformation, whereas younger strata are characterized by contraction and strike-slip faults interpreted to result from thrust sheet emplacement. The interpretation of the timing for the shortening axes in the younger strata is supported by the observation that these axes are parallel to shortening axes determined from finite strain analysis, calcite twins, and regional thrusting directions determined from fault-related folds and slickenlines. This study shows that fault population analysis in syntectonic strata provides an opportunity to constrain kinematic evolution during orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号