首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热处理Mg/Al-LDH结构演化和矿物纳米孔材料制备   总被引:3,自引:0,他引:3  
层状双氢氧化物(LDH)是自然界不常见的矿物,然而却是易于合成的重要材料。本文利用X射线衍射和透射电镜技术研究了Mg/Al-LDH热处理结构演化。结果表明,对于层间阴离子主要为碳酸根的Mg/Al-LDH,在400~800℃之间形成镁铝固溶体似方镁石结构氧化物。在层状双氢氧化物脱出结构水形成氧化物的过程中,产生2~3nm的纳米孔隙,但仍保留原来LDH片状晶体假象形貌,并继承原来的晶体结构取向。煅烧形成的具有似方镁石结构的氧化物可以重新水化形成新生LDH,但重新水化形成的LDH结晶度比原来的LDH结晶度低,这一过程可以导致微米和亚微米颗粒LDH趋于纳米化,并产生纳米粒间孔隙。温度高于1000℃时似方镁石结构氧化物进一步相变为尖晶石结构氧化物和方镁石复合物相,其中的方镁石可以水化为水镁石并且可以酸溶去除,相转变形成的尖晶石呈现纳米多晶并存在纳米粒间孔隙。这一发现为利用矿物相变原理制备廉价似方镁石结构纳米孔材料、LDH结构纳米孔材料和尖晶石结构纳米材料提供了新的思路。  相似文献   

2.
在模拟含Cu2+废水中加入Mg2+和Al3+,以NaOH为沉淀剂,研究金属盐水解即时合成层状双氢氧化物去除Cu2+的可行性,同时考察了体系终点pH值、配料中Mg/Cu摩尔比值及反应温度和时间对Cu2+去除率的影响,探讨了Cu2+去除机理及层状双氢氧化物形成过程。结果表明,实验条件下体系终点pH值显著影响Cu2+去除率,在pH值8.0~11.0范围内去除效果较好,达99%以上。通过X射线衍射分析结合即时合成法特点,废水中Cu2+主要是在晶核生成阶段以Cu/Mg/Al三元层状双氢氧化物形式被去除;三元层状双氢氧化物的形成由反应体系中Al3+、Cu2+、Mg2+分步水解导致,最适pH值约为9.0。  相似文献   

3.
即时合成层状双氢氧化物处理酸性大红GR染料实验研究   总被引:3,自引:0,他引:3  
印染废水是重要的工业污染源之一,研究新的印染废水脱色技术是水污染控制技术领域重要课题之一。以酸性大红GR为典型代表,初步研究了镁-铝盐水解共沉淀法即时合成层状双氢氧化物(LDH)处理阴离子型染料溶液的效果、影响因素和染料去除机理。结果表明,镁-铝盐水解共沉淀法即时合成LDH对酸性大红GR染料溶液有非常好的脱色效果,影响处理效果的主要因素是Mg/Al比和pH值。在pH值8.5~10.0,Mg/Al比2∶1~4∶1,都可以获得较好的净化效果,酸性大红GR染料浓度0.65 mmol/L时,染料去除率达99%。其净化机理是,当在染料溶液中投加Mg2 、Al2 溶解盐和NaOH时,Mg2 、Al3 水解共沉淀形成LDH的同时,染料阴离子以平衡LDH结构电荷的形式进入LDH结构层间,含有染料的LDH通过沉淀分离从溶液中去除。  相似文献   

4.
即时合成层状双氢氧化物处理高氟水的实验研究   总被引:2,自引:0,他引:2  
提出了即时合成层状双氢氧化物去除F-的新方法,并初步揭示了反应的基本原理:首先由Mg2 、Al3 水解共沉淀形成LDH,然后F-嵌入LDH层间平衡结构电荷,从而使F-离子以LDH沉淀的形式被去除。研究结果表明,影响处理效果的因素包括Mg/Al比值、pH值、反应时间等。当Mg/Al为2∶1,pH值为9.5,反应时间为120 min时,F-去除率较高,Mg、Al利用比较充分,显示这种废水处理技术具有非常好的研究价值。  相似文献   

5.
物理化学条件对合成Mg/Al-LDH结晶度和结构的影响   总被引:5,自引:1,他引:5       下载免费PDF全文
采用共沉淀法在不同物理条件下合成了一系列镁铝层状双氢氧化物(LDH),用化学分析、XRD和红外光谱对产物的组成与结构进行了表征,并探讨了初始溶液Mg/Al比、平衡pH值、水热反应温度、干燥温度等因素对合成LDH产物的结晶度、Mg/Al比、结构以及镁铝水解率的影响。结果表明,在实验条件范围内,最佳的合成条件为:初始Mg/Al比为2∶1,pH值为10,合成温度50℃,在此条件下固体产物为单一LDH物相,合成LDH的Mg/Al比为2∶1,镁铝水解率分别为99.21%和98.97%,结晶度高,可以实现在较低的温度下水热合成LDH。由于在LDH结构中Al3 替代Mg2 的量不同,导致X衍射分析d值和晶胞参数呈规律性变化。  相似文献   

6.
凹凸棒石酸活化废液制备LDH实验研究Ⅰ:合成方法和表征   总被引:8,自引:5,他引:8  
在利用凹凸棒石生产活性白土过程中,大量形成的凹凸棒石酸活化废液造成了严重的环境问题。用凹凸棒石酸活化废液制备LDH(层状双氢氧化物)。一方面得到了LDH。同时也为解决活性白土生产过程中的废水污染提供了一条有效途径。利用TEM和XRD研究了凹凸棒石粘土活化废液制备阴离子粘土微观结构特征,并对这种材料的形成机制以及应用前景进行了讨论。  相似文献   

7.
凹凸棒石与Ni2+的长期吸附作用   总被引:1,自引:1,他引:1  
以Ni2+为例研究了凹凸棒石与重金属离子长期作用过程,探讨了重金属离子在凹凸棒石上的吸附反应动力学,并运用高分辨透射电镜揭示了凹凸棒石与重金属离子互相作用引起重金属离子水解沉淀、形成氢氧化物或层状双氢氧化物次生物相的现象.实验表明,凹凸棒石-Ni2+水悬浮体系中,随着时间的延长溶液的pH值逐渐升高,Ni2+浓度逐渐降低,并且长期作用后悬浮液的pH值和重金属离子浓度受到固/液比控制.Ni2+在凹凸棒石和水两相中的分配在长达40 d的时间内都没有达到完全平衡,表明凹凸棒石-Ni2+水悬浮体系中存在凹凸棒石与重金属离子长期互相作用.凹凸棒石与Ni2+长期作用Ni2+浓度变化可以用抛物线扩散方程、双常数方程、一级扩散方程、Elovich方程较好地拟合.凹凸棒石与重金属的长期作用反应机制可能是由于凹凸棒石纳米效应和反应活性,表面缓慢水化导致含重金属离子溶液pH值缓慢升高,诱导了Ni2+在凹凸棒石表面沉淀,在凹凸棒石表面形成了氢氧化物或层状双氢氧化物.  相似文献   

8.
在模拟含Zn2 废水中加入Mg2 和Al3 ,以NaOH为沉淀剂,研究金属盐水解即时合成层状双氢氧化物(LDH)去除Zn2 的可行性。详细探讨了体系终点pH值、配料中Mg2 /Zn2 摩尔比值及反应温度和时间对Zn2 去除率的影响,结合X射线衍射分析(XRD)探讨了Zn2 去除机理,并与化学沉淀法进行了比较。结果表明,实验条件下只有pH值显著影响Zn2 去除率(p<0.05),在9.0~11.0范围内去除效果最佳,达99%以上。通过XRD分析结合即时合成法特点,废水中Zn2 主要是在晶体生成阶段以Zn-Mg-Al三元LDH化合物形式被去除的。与化学沉淀法相比,即时合成法效果更好,适用pH值范围更广,用来处理含Zn2 废水更具优势。  相似文献   

9.
工业染料废水是一类治理难度很大的有机废水,研究新的处理工业染料废水的方法是水污染控制技术领域的重要课题之一。本文研究即时合成层状双氢氧化物(LDH)处理酸性金黄溶液的效果以及影响因素,并利用XRD分析研究了酸性金黄染料在LDH结构中的嵌入方式和反应机理。结果表明,在酸性金黄溶液中同时加入镁盐和铝盐,在pH 7~11的范围内,酸性金黄都有很高的去除率。酸性金黄阴离子以补偿LDH层板电荷的形式嵌入到层间。嵌入到层间的酸性金黄阴离子以双层倾斜45°方式排列。  相似文献   

10.
湘潭锰矿床的锰矿层赋存于新元古代南华系(成冰系)大塘坡组底部含锰黑色页岩中,含锰矿物主要为菱锰矿。湘潭锰矿的Fe/Mn值低,Th/U、V/(V+Ni)和V/Cr值等地球化学指标显示其发育在氧化-次氧化的沉积环境中,暗示菱锰矿并不是由Mn~(2+)和CO_3~(2-)直接沉淀形成的。湘潭锰矿稀土元素含量高,稀土元素配分模式存在轻微的中稀土元素富集,具有明显的Ce正异常,这些特征指示湘潭锰矿含锰矿物是以锰氧化物或氢氧化物的形式沉淀的。同时,锰矿的碳同位素富集碳的轻同位素,说明有机物参与了菱锰矿的形成过程。综合分析表明,湘潭锰矿成矿过程可以分为沉淀和转化两个阶段:在氧化性的水体中,Mn以氧化物或氢氧化物的形式沉淀;在缺氧且富含有机物质的成岩环境中,Mn氧化物或氢氧化物被有机物还原而转化生成菱锰矿。这与华南地区其他几个典型的大塘坡式锰矿的成矿机制一致。  相似文献   

11.
赤泥是铝土矿炼制氧化铝过程中产生的高碱性废料,随着铝工业的高速发展,世界范围内赤泥年排放量已严重超过环境负荷,造成了巨大的处置压力和污染风险,赤泥的高效资源化利用迫在眉睫。由赤泥制备层状双金属氢氧化物(LDH)是当前国内外重点关注的一个循环路径,具有大规模工业化潜力。文章论述了赤泥基LDH合成工艺及应用研究进展,发现其主要的合成工艺有共沉淀法、煅烧水化法和机械化学合成法,合成的赤泥基LDH类型受铝土矿成分及冶炼工艺影响显著。赤泥基LDH通常被用作吸附剂去除水体无机阴离子及捕获CO2,同时也是一种新型环保型无卤阻燃添加剂。赤泥基LDH还是一种优异的光催化剂,赤泥中杂质(Fe2O3)的引入导致局部构筑异质结构,有利于光敏电子和空穴物种的分离与传递。最后文章提出如下展望:(1)在双碳目标背景下,赤泥基LDH的制备符合“循环经济”等可持续发展目标,具有实际的大规模应用潜力,未来应大力推进合成及应用方面的研究;(2)未来应重点研究如何进一步优化合成工艺,提高产率,增强可持续性(如引入其他废弃物作为二价金属源),提高合成专一性,以及如何降低赤泥基LDH在应用过程中的环境风险;(3)明晰LDH结构与...  相似文献   

12.
蛇纹石化过程中铁活动性的高温高压实验研究   总被引:3,自引:1,他引:2  
蛇纹石化过程中铁的活动性影响铁氧化物的形成和体系的氧逸度。然而,关于橄榄岩蛇纹石化过程中各矿物(橄榄石、斜方辉石和单斜辉石)蚀变过程中铁的活动性仍没有详细的研究。本文报道了80~200℃、饱和蒸气压下,不同的初始流体、水岩比条件下,橄榄岩蛇纹石化过程中铁的活动性。结果表明,蛇纹石化流体的铁含量较低(0.0~0.7mmol/kg),没有形成铁氧化物或铁氢氧化物,铁主要富集在蛇纹石和未反应的初始矿物中(例如,橄榄石和辉石)。由橄榄石蚀变形成的蛇纹石和由斜方辉石蚀变生成的蛇纹石化学组成相差较大,前者富铁而贫铝,后者贫铁而富铝。但当初始流体为碱性的0.5mol/L Na Cl(aq)时,两种不同来源的蛇纹石组成相差不大。尤为重要的是,单斜辉石蚀变生成的蛇纹石铁含量较高,8.1%~10.2%Fe O,远高于单斜辉石的铁含量(2.6%Fe O)。以上表明,低温蛇纹石化过程中,铁不能够大规模、长距离的运移,但在微米尺度上是活动的。  相似文献   

13.
为厘清北朝鲜西南沃尔萨区新发现的含水镁石大理岩的矿物组成及其形成的温度-压力条件,对该区大理岩中的水镁石进行了XRD分析、化学分析、偏光显微镜观察和热分析,根据分析结果计算矿物组成,建立了方镁石形成的反应方程式,并对其热力学模型进行了分析。结果表明,大理岩的基本矿物组成及其平均含量(质量分数)为:水镁石30.33%,白云石10.51%,方解石56.66%,方镁石少量。水镁石是一种方镁石的水化反应产物,呈纤维状集合体。热力学模型解释表明,白云石分解为方镁石是在较低温(426~550℃)和低压(2.6 MPa以下)条件形成的,是在接近于地表的浅层区域,经过"长期地质作用过程"逐渐形成的。  相似文献   

14.
利用坡缕石粘土酸活化废液制备层状双氢氧化物(LDH)可以有效地解决活性白土生产过程产生的废酸液污染。研究了石灰中和坡缕石粘土酸活化废液合成LDH方法,以及制备的LDH材料对CrO^2-4和PO^3-4的吸附作用。结果表明:利用坡缕石粘土酸活化废液合成的LDH对PO^3-4主一的吸附能力比对CrO^2-4吸附能力强,对CrO^2-4、PO^3-4吸附性能接近于国外商品级LDH的性能,CrO^2-4、PO^3-4的吸附等温线符合Freundlich方程,LDH焙烧后对CrO^2-4、PO^3-4吸附能力比焙烧前有很大程度提高。  相似文献   

15.
<正>层状双金属氢氧化物(layered double hydroxide compounds,简称LDH)是一种阴离子型黏土矿物,具有层间阴离子可交换性、化学组成可调控性以及记忆效应等,在吸附催化等领域具有广泛的应用。近年来,LDH及其煅烧产物(calcined LDH,简称LDO)被证明是阴离子染料的高效吸附剂。然而,LDH/LDO处理阴离子染料废水后会产生大量废弃物,处置不当则会引发二次污染。因此,有必要研究废弃LDH/LDO  相似文献   

16.
采用焙烧还原法制备了牛磺酸/层状双氢氧化物插层复合物(TAU-LDH)和布洛芬/层状双氢氧化物插层复合物(IBU-LDH)。研究了插层复合物中TAU和IBU在模拟人体内肠道pH值(pH=7.4)的磷酸缓冲溶液(PBS)中的缓释性能。XRD和FT-IR分析表明,TAU和IBU阴离子成功进入到LDHs层间形成插层复合物,IBU-LDH插层复合物的结晶性能优于TAU-LDH。UV-Vis分析表明,存在于LDHs层间的TAU和IBU在缓冲溶液中具有明显的缓释特性。复合物中的TAU 40 min释放85%,180 min释放完全;IBU 40 min释放88%,180 min释放完全。IBU-LDH插层复合物的药物缓释特性优于TAU-LDH插层复合物。  相似文献   

17.
有关铝土矿中铀富集的报道很多,但至今未见独立铀矿物存在的相关文献。本次研究采用岩相学观察、X衍射(XRD)、ICP-MS、电子探针(EPMA)、拉曼光谱分析等手段,对黔中典型的铝土矿——云峰铝土矿中的晶质铀矿进行了研究。研究发现该铝土矿床中,铀富集明显(w(U)(18×10~(-6)~62×10~(-6)),平均值35×10~(-6)),铀矿物大小呈微米至亚微米级,围绕锐钛矿边缘生长、或充填于高岭石微裂隙中、或散布于与黄铁矿密切相关的高岭石或硬水铝石中。铀矿物的主要组分为UO_2(w(UO_2)为52.2%~80.88%)和TiO_2(w(TiO_2)为1.85%~14.98%);电子探针面扫描显示铀矿物中钛分布不均匀;铀矿物的拉曼特征波长为442 cm~(-1)和454 cm~(-1),因此,初步推测铀矿物为晶质铀矿和含钛晶质铀矿。其形成过程大致如下,来源于下寒武统牛蹄塘组黑色岩系中的铀(U~(4+))在风化过程中氧化为U~(6+)、析出、被Al~-, Fe~-氧化物/氢氧化物吸附;在沉积和成岩过程中,随着三水铝石转变为勃姆石和硬水铝石、铁氧化/氢氧化物转变为黄铁矿,吸附的铀解吸、还原(U~(6+)至U~(4+))、最后形成铀矿物。  相似文献   

18.
近年来,设计和制备具有高活性和稳定性的异相催化剂成为国内外研究热点,其主要关注面分为以下3点[1]:1)怎样设计活性位点高度分散的催化剂以达到最大限度利用材料资源的目的;2i)针对某一具体的工业过程,怎样在原子水平上调节活性位点的几何和电子状态,设计高选择性的催化剂;3)怎样提高活性位点的稳定性得到长期使用和循环的催化剂。材料的催化性能由它的电子结构决定,特别是表面和界面的电子结构。而电子结构又受材料的表面形态和活性位点的结构影响。因此,通过调节材料的纳米结构来组装电子结构,是设计高活性和选择性催化剂的有效方法 [2]。LDH的二维层状结构被认为是设计吸附剂和催化剂材料的优选模板。其关键因素是LDH的MII和MIII阳离子是分布在一个统一的规整的羟基层中,而不是像阳离子那样成簇或成团。这一特征结构使得LDH成为具有特殊形貌和表面结构的活性位点高分散的纳米催化剂[3]。本研究分别采用共沉淀法、静态尿素法和动态尿素法合成配比为4:1:1的Co Mn Al-LDH,并在500℃煅烧得到LDO。通过对比发现不同制备方法获得Co Mn Al-LDH/LDO在形貌、孔隙结构和组成上具有一定的差异性。从形貌来看,静态尿素法合成的LDH/LDO具有较大的片状结构,且堆积成簇;而动态尿素法得到层状化合物为大小均一(1.2μm)、分散较好的六边形片状结构;共沉淀法制备的LDH/LDO则为大小不均、团聚成大颗粒的片状结构。3种方法制备的LDH在500℃煅烧后均得到了尖晶石结构的混合金属氧化物,且煅烧后Co以+2和+3价形式存在,而Mn以+3和+4价形式存在。且在300~500℃范围内,随着煅烧温度的升高,材料中高价态的过渡金属含量增加。通过分析3种方法制备的LDO的比表面积和孔隙结构,发现受体系的均匀程度及成核和晶化速率的影响,3种材料按比表面积大小排列顺序为:动态尿素法(141.13 m2·g-1)共沉淀法(134.57 m2·g-1)静态尿素法(64.17m2·g-1),平均孔隙大小排列顺序为:共沉淀法(18.45 nm)静态尿素法(8.82 nm)动态尿素法(5.71nm)。共沉淀法制备的LDO以两端开口的圆柱形孔隙为主,而静态尿素法和动态尿素法制备的LDO以片层堆积的裂缝孔为主。以上结论为层状金属化合物晶粒结构和尺寸的可控性制备提供理论依据。  相似文献   

19.
罗照华 《地学前缘》2020,27(5):61-69
火成岩中可以包含多种晶体群这一发现具有重要意义,使得成因矿物学重新成为揭示岩浆系统演化的基本指导思想。但是,这种重要性在许多文献中都没有得到反映,其典型实例就是镁铁质层状侵入体中堆晶岩的成因。争论在于堆晶矿物是循环晶还是母岩浆的液相线相。因此,本文致力于探讨四川攀西地区镁铁质层状侵入体中堆晶岩的形成过程,重申成因矿物学的重要意义。显微镜观察表明,堆晶单斜辉石富含Fe-Ti氧化物出溶叶片(含叶片辉石),表明其形成环境明显不同于与斜长石呈共结关系的单斜辉石(无叶片辉石);无叶片辉石和斜长石中的橄榄石包裹体呈浑圆状,表明了橄榄石与结晶环境间的热力学不平衡。橄榄石与熔体间Fe-Mg分配关系分析表明,根据母岩浆成分推测的橄榄石Fo值远低于岩体中观测橄榄石化学成分变化范围(Fo61-Fo81)的高限,表明至少部分橄榄石不是寄主侵入体的液相线相。橄榄石的Mg#值(100×Mg/(Mg+Fe))与微量元素(特别是Ni)的相关关系表明存在多种橄榄石晶体群,它们形成于不同的热力学环境中。晶体沉降过程分析表明,寄主岩浆析出的晶体几乎不可能发生快速重力沉降来形成堆晶岩。所有这些证据都表明,形成堆晶岩的矿物主要来自岩浆系统深部不同的岩浆房中,是被岩浆携带输运到终端岩浆房的循环晶。  相似文献   

20.
青阳峙门口层状硫铁矿矿床赋存于石炭纪地层中,矿体主要呈似层状、透镜状;尽管经历了热变质与接触变质作用,但矿体中仍残留胶黄铁矿和菱铁矿,矿石中不仅可以见到交代残余结构,还可见到草莓结构和微层理构造.黄铁矿中砷的质量分数和S/Se,Co/Ni比值显示火山热水沉积特征.同位素分析显示,矿石中硫化物的硫同位素组成表现出火山热水沉积和热液改造特征;矿石中铅同位素组成则显示,黄铁矿中铅以上地壳铅为主,混有少量地幔铅.上述研究表明峙门口层状硫铁矿矿床是由石炭纪喷流沉积形成的层状矿床或矿胚层,经燕山期岩浆热液和构造作用改造所形成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号