首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Intermediate-term periodicities in solar activity   总被引:2,自引:0,他引:2  
The presence of intermediate-term periodicities in solar activity, at approximately 323 and 540 days, has been claimed by different authors. In this paper, we have performed a search for them in the historical records of two main indices of solar activity, namely, the daily sunspot areas (cycles 12–21) and the daily Zürich sunspot number (cycles 6–21). Two different methods to compute power spectra have been used, one of them being especially appropriate to deal with gapped time series. The results obtained for the periodicity near 323 days indicate that it has only been present in cycle 21, while in previous cycles no significant evidence for it has been found. On the other hand, a significant periodicity at 350 days is found in sunspot areas and Zürich sunspot number during cycles 12–21 considered all together, also having been detected in some individual cycles. However, this last periodicity must be looked into with care due to the lack of confirmation for it coming from other features of solar activity. The periodicity around 540 days is found in cycles 12, 14, and 17 in sunspot areas, while during cycles 18 and 19 it is present, with a very high significance, in sunspot areas and Zürich sunspot number. It also appears at 528 days in sunspot areas during cycles 12–21. On the other hand, it is important to note the coincidence between the asymmetry, favouring the northern hemisphere, of sunspot areas and solar flares during cycle 19, and the fact that the periodicity at 540 days was only present, with high significance, in that hemisphere during that solar cycle.  相似文献   

2.
E. N. Parker 《Solar physics》1996,163(2):327-333
For solar cycles 20 and 21, the longitudinal distribution of the D, G, and H-type solar flares which are related to the final phases of active region evolution, have been analysed for the northern and the southern hemispheres separately. One active zone has been found for D, G, and H-type flares, and one more active zone has been found for the H-type flares of the northern hemisphere for cycle 20. Two active zones have been found for the D and H-type flares of the northern hemisphere for cycle 21. Southern-hemisphere flares are concentrated in two active zones for cycle 20. The active zone in the northern hemisphere, which rotates with a synodic period of about 26.73 days, produced 30% of the examined D-type flares during cycle 20 and persisted in the same position during the two solar cycles, 20 and 21. The active zone in the southern hemisphere rotated with a synodic period of about 27.99 days. Only the active zone producing D-type flares persisted in the same position during the two solar cycles.  相似文献   

3.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

4.
We have analyzed the intermediate-term periodicities in soft X-ray flare index (FISXR) during solar cycles 21, 22 and 23. Power-spectral analysis of daily FISXR reveals a significant period of 161 days in cycle 21 which is absent during cycles 22 and 23. We have found that in cycle 22 periodicities of 74 and 83 days are in operation. A 123-day periodicity has been found to be statistically significant during part of the current solar cycle 23. The existence of these periodicities has been discussed in the light of earlier results.  相似文献   

5.
V. K. Verma 《Solar physics》1988,114(1):185-188
The present paper investigates the north-south asymmetry for major flares (solar cycles 19 and 20), type II radio bursts (solar cycles 19,20 and 21), white light flares (solar cycle 19,20 and 21), and gamma ray bursts, hard X-ray bursts and coronal mass ejections (solar cycle 21). The results are compared with the found asymmetry in favour of the northern hemisphere during solar cycles 19 and 20 in favour of the southern hemisphere during solar cycle 21.  相似文献   

6.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

7.
The near 155 days solar periodicity, so called Rieger periodicity, was first detected in solar flares data and later confirmed with other important solar indices. Unfortunately, a comprehensive analysis on the occurrence of this periodicity during previous centuries can be further complicated due to the poor quality of the sunspot number time series. We try to detect the Rieger periodicity during the solar cycles 3 and 4 using information on aurorae observed at mid and low latitudes. We use two recently discovered aurora datasets, observed in the last quarter of the 18th century from UK and Spain. Besides simple histograms of time between consecutive events we analyse monthly series of number of aurorae observed using different spectral analysis (MTM and Wavelets). The histograms show the probable presence of Rieger periodicity during cycles 3 and 4. However different spectral analysis applied has only confirmed undoubtedly this hypothesis for solar cycle 3.  相似文献   

8.
The periodic analyses of solar flare data have been carried out by different authors for about three decades. Controversial results appear as depending on the analysis techniques and investigated time periods. Considering that different authors applied different methods to different data sets, it seems necessary to reanalyze the periodicity of solar flare index with a unified method. In this study we used two new methods to investigate the periodic behavior of solar flare index data, first for individual cycles 21, 22 and 23, and then for all of them. We used i) the multi taper method with red- and white-noise approximations, and ii) the Morlet wavelet transform for periodicity analysis. Apart from the solar rotation periodicity of about 27 days which is of obvious significance and is found in all examined cycles with at least a 90% significance level, we obtained the following prominent periods: 152 days for cycle 21, 73 days for cycle 22, and 62 days for cycle 23. Finally, we compare our results with the ones previously found. We emphasize the fact that a lesser number of periodicities is found in the range of low frequencies (long periods) while the higher frequencies show a greater number of periodicities. This result might be useful for better predictions of the solar cycles.  相似文献   

9.
The periodicities of monthly values of major flare numbers and comprehensive major flare index (CFI) have been studied for the 20th solar cycle. It has been proved that the periodicity 152 days exists also in the southern (S) solar hemisphere. This periodicity has been previously defined in the earlier cycles to be a northern (N) periodicity, but it has migrated to the southern hemisphere (S) during the cycles 19, 20, 21. For the whole solar disk data, it has been found that the periodicity at 78.43d is much remarkable than its first harmonic at 156.86d. We have also detected very strong periodicity at 548.96d in N-hemisphere while a strong one has been found near 100d in both solar hemispheres. The detected periodicities at 80±2d and 101-+1d seems to have a global origin . The 87.1d periodicity is present and it is suggested that it is related to 88d periodicity attributed to the tidal influence of the planet Mercury on sunspots. Both hemispheres present their periodicities independently.  相似文献   

10.
Taeil Bai 《Solar physics》2006,234(2):409-419
In the declining phase of the current solar cycle (23), a large number of major flares were produced. In this cycle, the monthly sunspot number continuously remained below 100 since October 2002. However, during four epochs since then, flare activity became very high. Compared to this, each of cycles 21 and 22 produced only one epoch of high activity in the declining phase. In the declining phase of cycle 20, similarly to this cycle, there were four epochs of high flare activity. During 2003 and 2004, the distribution of flare sizes measured in GOES classes was much harder (i.e., proportionately more energetic flares) than during the maximum years. Such pronounced hardening of the size distribution was not observed in the previous cycles. It is of theoretical interest to understand why some cycles are very active in the declining phase, and the high level of activity in the declining phase has practical implications for planning solar observations and forecasting space weather.  相似文献   

11.
We used two methods to investigate the periodic behavior of sunspot counts in four categories for the time period January 1986?–?October 2013. These categories include the counts from simple (A and B), medium (C), large (D, E, and F), and final (final-stage; H) sunspot groups. We used i) the multitaper method with red noise approximation, and ii) the Morlet wavelet transform for periodicity analysis. Our main findings are that 1) the solar rotation periodicity of about 25 to 37 days, which is of obvious significance, is found in all groups with at least a 95 % significance level; 2) the periodic behavior of a cycle is strongly related to its amplitude and group distribution during the cycle; 3) the appearance of periods follows the amplitude of the investigated solar cycles; and that 4) meaningful periods do not appear during the minimum phases of the investigated cycles. We would like to underline that the cyclic behavior of all categories is not exactly the same; there are some differences between these groups. This result can provide a clue for the better understanding of solar cycles.  相似文献   

12.
Solar neutrino in relation to solar activity   总被引:2,自引:0,他引:2  
D. Basu 《Solar physics》1992,142(1):205-208
Here we have carried out a power-spectrum analysis of solar nuclear gamma-ray (NGR) flares observed by SMM and HINOTORI satellites. The solar NGR flares show a periodicity of 152 days, confirming the existence of a 152–158 days periodicity in the occurrence of solar activity phenomena and also indicating that the NGR flares are a separate class of solar flares. The power-spectrum analysis of the daily sunspot areas on the Sun for the period 1980–1982 shows a peak around 159 days while sunspot number data do not show any periodicity (Verma and Joshi, 1987). Therefore, only sunspot area data should be treated as an indicator of solar activity and not the daily sunspot number data.  相似文献   

13.
Bai  Taeil 《Solar physics》2003,215(2):327-334
The 160.01-min periodicity was originally found from line-of-sight velocities of the photosphere, and Kotov and Tsap reported a detection of the same periodicity in flare occurrence times. Intrigued by this, I analyze occurrence times of flares of cycles 19–23 to investigate periodicities in the neighborhood of 160 min, cycle by cycle. The 160.01-min periodicity is not detected from any cycle. However, a 160.69 min periodicity is detected in the spectrum for cycle 19, and a 160.32-min periodicity is detected in the power spectrum for major flares of cycle 21. The 160.32-min periodicity did not influence the occurrence rate of flares with X-ray classes below M3.0. Among major flares, the amplitude of modulation increases with increasing X-ray class.  相似文献   

14.
In this investigation, we have studied the latitudinal, longitudinal (northern and southern hemispheric) distributions based on 1737 major flares observed during solar cycles 19 and 20 (see subsequent paragraphs) and have arrrived at some interesting results which go to show that as far major flares are concerned latitudewise 11–20° belts, and longitudewise 5–8 places are most prolific in producing major flares in each hemisphere. During the above cycles at least 5 flare zones are present in each hemisphere. In fact these zones seem to produce more than 50% of the total number of energetic flares investigated by us and occupy only <4% area of the Sun.  相似文献   

15.
The year 1991 is a part of the declining phase of the solar cycle 22, during which high energetic flares have been produced by active regions NOAA/USAF 6659 in June. The associated solar proton events have affected the Earth environment and their proton fluxes have been measured by GOES space craft. The evaluation of solar activity during the first half of June 1991, have been carried out by applying a method for high energetic solar flares prediction on the flares of June 1991. The method depends on cumulative summation curves according to observed H-alpha flares, X-ray bursts, in the active region 6659 during one rotation when the energetic solar flares of June 1991 have occurred. It has been found that the steep trend of increased activity sets on several tens of hours prior to the occurrence of the energetic flare, which can be used, together with other methods, for forecasts of major flares. All the used data at the present work are received from NOAA, Boulder, Colorado, USA.  相似文献   

16.
We investigate the statistical distribution of X-class flares and their relationship with super active regions (SARs) during solar cycles 21–23. Analysis results show that X1.0–X1.9 flares accounted for 52.71 % of all X-class flares, with X2.0–X2.9 flares at 20.59 %, X3.0–X4.9 at 13.57 %, X5–X9.9 at 8.37 % and ≥X10 at 4.75 %. All X-class flares occurred around the solar maximum during solar cycle 22, while in solar cycle 23, X-class flares were scattered in distribution. In solar cycle 21, X-class flares were distributed neither in a concentrated manner like cycle 22 nor in a scattered manner as cycle 23. During solar cycles 21–23, 32.2 % of the X1.0–X1.9 flares, 31.9 % of the X2.0–X2.9 flares, 43.3 % of the X3.0–X4.9 flares, 81.08 % of the X5.0–X9.9 flares, and 95.2 % of the ≥X10 flares were produced by SARs.  相似文献   

17.
Although solar ultraviolet (UV) irradiance measurements have been made regularly from satellite instruments for almost 20 years, only one complete solar cycle minimum has been observed during this period. Solar activity is currently moving through the minimum phase between cycles 22 and 23, so it is of interest to compare recent data taken from the NOAA-9 SBUV/2 instrument with data taken by the same instrument during the previous solar minimum in 1985–1986. NOAA-9 SBUV/2 is the first instrument to make continuous solar UV measurements for a complete solar cycle. Direct irradiance measurements (e.g., 205 nm) from NOAA-9 are currently useful for examining short-term variations, but have not been corrected for long-term instrument sensitivity changes. We use the Mgii proxy index to illustrate variability on solar cycle time scales, and to provide complementary information on short-term variability. Comparisons with contemporaneous data from Nimbus-7 SBUV (1985–1986) and UARS SUSIM (1994–1995) are used to validate the results obtained from the NOAA-9 data. Current short-term UV activity differs from the cycle 21–22 minimum. Continuous 13-day periodicity was observed from September 1994 to March 1995, a condition which has only been seen previously for shorter intervals during rising or maximum activity levels. The 205 nm irradiance and Mgii index are expected to track very closely on short time scales, but show differences in behavior during the minimum between cycles 22 and 23.  相似文献   

18.
22周上升相日面各经度带的活动规律   总被引:1,自引:0,他引:1  
本文回顾了1983年以来一些对太阳活动的谱分析结果。大致可分为两种规律:在太阳活动11年周期的上升相一般呈现80天左右的周期。下降相呈现150天左右的周期。这些规律均是由太阳全日面总体活动指数得到的谱分析结果。文中将第22周上升段(1987.1.1—1988.7.31)的太阳黑子群和X射线耀斑按经度带作了极大熵谱估计。结果表明,各经度带的活动规律不同,同一经度带内,太阳黑子群和X射线耀斑的出现规律也不尽相同。这种将事件按经度带分布得到的活动规律对事件本身的中期预报将会有实际应用价值。  相似文献   

19.
A list of nearly 350 flares accompanied by type IV radio bursts by Krüger et al. (1971), which covers a period of 14 yr (1956–1969), was expanded to include all PCA and solar cosmic ray events during this entire period. This list, which includes practically all of the most energetic events during the maxima of two consecutive solar cycles, was used to investigate the latitudinal distribution of the above-mentioned flares, as well as of all PCA events, solar cosmic ray events and plage regions associated with them.Histograms of these occurences show clearly the appearance of two peaks in both solar maxima, which confirm the observations of Gnevyshev (1967). Latitudinal analysis of these histograms shows that in cycle 20 the two peaks are independent and their relative strength varies strongly with latitude. In cycle 19, however, this effect is not clearly evident, possibly because of the extremely high level of activity during this cycle. In both cycles, the second maximum shows the highest concentration of the most energetic events.During 1971–1972 visiting Professor of Astrophysics at the National University of Athens, Athens, Greece.  相似文献   

20.
Based on analysis of the annual averaged relative sunspot number (ASN) during 1700–2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012–2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≥ X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号