共查询到20条相似文献,搜索用时 0 毫秒
1.
Constraining physical parameters of tephra dispersion and deposition from explosive volcanic eruptions is a significant challenge, because of both the complexity of the relationship between tephra distribution and distance from the vent and the difficulties associated with direct and comprehensive real-time observations. Three andesitic subplinian explosions in January 2011 at Shinmoedake volcano, Japan, are used as a case study to validate selected empirical and theoretical models using observations and field data. Tephra volumes are estimated using relationships between dispersal area and tephra thickness or mass/area. A new cubic B-spline interpolation method is also examined. Magma discharge rate is estimated using theoretical plume models incorporating the effect of wind. Results are consistent with observed plume heights (6.4–7.3 km above the vent) and eruption durations. Estimated tephra volumes were 15–34?×?10 6 m 3 for explosions on the afternoon of 26 January and morning of 27 January, and 5.0–7.6?×?10 6 m 3 for the afternoon of 27 January; magma discharge rates were in the range 1–2?×?10 6 kg/s for all three explosions. Clast dispersal models estimated plume height at 7.1?±?1 km above the vent for each explosion. The three subplinian explosions occurred with approximately 12-h reposes and had similar mass discharge rates and plume heights but decreasing erupted magma volumes and durations. 相似文献
3.
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m 3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume. 相似文献
4.
The first sign of magma accumulating beneath Miyakejima, an island volcano in the northern Izu islands, Japan, came at around 18:00 on 26 June 2000, when a swarm of earthquakes was detected by a volcano seismic network on the island. Earthquakes occurred initially beneath the southwest flank near the summit and gradually migrated west of the island, where a submarine eruption occurred the next morning. Earthquakes then migrated further to the northwest between Miyakejima and Kozushima, another volcanic island and developed to the most intense earthquake swarm ever observed in and around Japanese archipelago. To better image how the initial magma intrusion occurred, we relocated hypocenters by using a station-correction method and a double-difference method. The relocated epicenters are generally concentrated near the upper bound of dyke intrusions inferred from geodetic studies throughout the initial stages of the 2000 eruption at Miyakejima from 26 to 27 June 2000. As for seismic activity westward off Miyakejima in the morning on 27 June, hypocenters from both a nationwide seismic network that were relocated by the double-difference method, and those from the volcano seismic network relocated by the station-correction method, formed a very shallow cluster that ascended slowly with time as it propagated northwestward from Miyakejima. This suggests that the dykes have both a radial and upward component of movement.Editorial responsibility: S. Nakada, T. Druitt 相似文献
6.
A new continuous monitoring system has been developed for the measurement of volcanic gas from the steam well located 3 km north from the summit of Izu-Oshima volcano, Japan. After removing the water vapor using three sequential dehydration methods, CO 2 and SO 2 contents are measured using IR sensors, and O 2 and H 2 using a zirconia sensor and a semiconductor sensor, respectively. This system has been in operation without any significant trouble for 3 years.The dehydrated volcanic gas from the well consists of a mixture of CO 2, O 2 and N 2. A decreasing trend of the CO 2 content was observed from 1995 to 1998 together with a decrease of volcanic activity. Seasonal changes have also been observed in CO 2 and O 2 contents, CO 2 being higher and O 2 lower in summer, which suggests larger contribution of magmatic components in summer. While changes in short-term variation in CO 2 and O 2 are influenced by atmospheric pressure changes; the CO 2 content correlates inversely with atmospheric pressure unlike O 2 with some hours delay. In contrast, the H 2 content increased intermittently up to 1200 ppm one to several hours after a sudden drop in the atmospheric pressure and without any apparent correlation with seasonal changes.This system allows us to study temporal variation in chemical composition of volcanic gas during quiescent periods of volcanic activity of Izu-Oshima volcano, and might help us detect anomalous changes before future eruptive events. 相似文献
8.
Hasselblad and Nikon stereographic photographs taken from Skylab between 9 June 1973 and 1 February 1974 give synoptic plan views of several entire eruption clouds emanating from Sakura-zima volcano in Kagoshima Bay, Kyushu, Japan. Analytical plots of these stereographic pairs, studied in combination with meteorological data, indicate that the eruption clouds did not penetrate the tropopause and thus did not create a stratospheric dust veil of long residence time. A horizontal eddy diffusivity of the order of 10 6 cm 2 s ?1 and a vertical eddy diffusivity of the order of 10 5 cm 2 s ?1 were calculated from the observed plume dimensions and from available meteorological data. These observations are the first, direct evidence that explosive eruption at an estimated energy level of about 10 18 ergs per paroxysm may be too small under atmospheric conditions similar to those prevailing over Sakura-zima for volcanic effluents to penetrate low-level tropospheric temperature inversions and, consequently, the tropopause over northern middle latitudes. Maximum elevation of the volcanic clouds was determined to be 3.4 km. The cumulative thermal energy release in the rise of volcanic plumes for 385 observed explosive eruptions was estimated to be 10 20 to 10 21 ergs (10 13 to 10 14 J), but the entire thermal energy release associated with pyroclastic activity may be of the order of 2.5 × 10 22 ergs (2.5 × 10 15 J).Estimation of the kinetic energy component of explosive eruptions via satellite observation and meteorological consideration of eruption clouds is thus useful in volcanology as an alternative technique to confirm the kinetic energy estimates made by ground-based geological and geophysical methods, and to aid in construction of physical models of potential and historical tephra-fallout sectors with implications for volcano-hazard prediction. 相似文献
9.
Iwate volcano, Japan, showed significant volcanic activity including earthquake swarms and volcano inflation from the beginning
of 1998. A large earthquake of magnitude 6.1 hit the south-west of the volcano on September 3. Although a 1 km 2 fumarole field formed, blighting plants on the ridge in the western part of the volcano in the spring of 1999, no magmatic
eruptions occurred. We reconcile the spatio-temporal distributions of volcanic pressure sources determined by previously reported
studies in which GPS, strain and tilt data from dense geodetic station networks are analyzed (Miura et al. Earth Planet Space
52:1003–1008, 2000; Sato and Hamaguchi J Volcanol Geotherm Res 155:244–262, 2006). We calculate the magma supply rates from their results and compare them with the occurrence rates of volcanic earthquakes.
The results show that the magma supply rates are almost constant or even decrease with time while the earthquake occurrence
rate increases with time. This contrast in their temporal changes is interpreted to result from stress accumulation in the
volcanic edifice caused by constant magma supply without effusion of magma to the surface. We further show that data showing
slight acceleration in strain can be best explained by magma ascent at a constant velocity, and that there is no evidence
for increased magma buoyancy resulting from gas bubble growth. This consideration supports the interpretation that the magma
stayed at 2 km depth and horizontally migrated. These findings relating magma supply rate and seismicity to magma ascent process
are clues to understanding why no magmatic eruption occurred at Iwate volcano in 1998. 相似文献
10.
Analysis of ground-deformation data obtained at and around Sakurajima volcano during the 1914 eruption indicates that the deformation may be interpreted by assuming a model with two pressure sources, one shallow (about 2 km deep) and vertically directive and the other deep (about 8 km deep) and obliquely, directly beneath the volcano. This model is reasonable from the viewpoint of the volcanic processes.The local upheaval near the centers of eruption has scarcely recovered because it surpassed the elastic limit. The recovery of the regional depression after the eruption can be interpreted as pressure accumulation beneath the volcano. It may be concluded that the center of pressure would remain at the deeper source beneath the volcano, but that the pressure would change, resulting in surface deformation. The depression and its recovery suggest the presence of a pressure focus or a ‘magma reservoir’ beneath the volcano. 相似文献
11.
We measured quantitatively colors of volcanic ash deposits erupted from three different styles of summit activity (Strombolian activity, Vulcanian explosions and continuous ash venting activity) at Sakurajima volcano from 1974 to 1985. Colors of Strombolian ash samples have larger yellow components of their visible spectra ( b? values) than those of explosion and continuous venting ash samples. Colors of explosion ash samples show larger variation in both red and yellow components of their visible spectra ( a? and b? values, respectively), while colors of continuous venting ash samples are in the narrow ranges within colors of explosion ash samples. Colors of components with lower densities than 3.1 g/cm 3 (groundmass and phenocrystic plagioclase) obtained by magnetic and heavy liquid separation methods are similar to the unseparated bulk ash samples. This result suggests that the color variations of ash deposits are mainly originated from the particles composed of groundmass. The particles can be classified into three different types of particles with different vesicularity and crystallinity (vesicular particle [VP], dense particle with vesicles [DPV] and dense particle without vesicles [DP]). Analytical results of component proportions, chemical compositions of groundmass glasses, ferrous iron contents and surface ferric materials show that (1) VP has larger yellow components of the visible spectrum ( b? values) and high ferrous iron content, and is less crystallized than the DP and DPV, (2) DP has larger red and yellow components of its visible spectrum ( a? and b? values, respectively) and involves ferric materials on the surfaces produced by oxidation process, and (3) DPV has smaller red and yellow components of its visible spectrum ( a? and b? values, respectively) and involves less ferric materials on the ash surfaces. Color differences of ash deposits from three different activity styles can be explained by the different mixing ratios of VP, DPV and DP. During the Strombolian activity, the VP is a main component in the ash, which is formed from relatively less degassed and crystallized magma. In the Vulcanian explosion and continuous ash venting activity, the proportions of DPV and DP in ash are larger than that in the Strombolian activity. The highly crystallized DP may correspond to a vent cap, and DPV to a magma below the cap. The color measurements of ash deposits provide information on the pre-eruptive processes at the shallower levels of a conduit. 相似文献
12.
We have investigated crustal deformations associated with the 1986 eruption of Izu-Oshima volcano, Japan, which was accompanied by an intensive fissure eruption. Two fissure crater chains, with NW-SE trend were created in the northern part of the caldera and on its northwestern flank. Their trend is consistent with the direction of compressive stress in this region. Depression of > 30 cm in the central zone including the caldera, and in the northwestern and southeastern parts in the island, was detected by precise leveling. On the other hand, uplifts up to 20 cm in the northeastern and southwestern parts were observed. Tide observations revealed that the Okada tide station, the leveling datum in Izu-Oshima, may have subsided by 5 cm after the eruption. An 1 m opening of fissure craters was detected by distance measurements of the baselines which cross fissure craters. Horizontal displacements obtained by reoccupation of control points showed a symmetrical pattern which was consistent with the opening of fissure craters. Anomalous strain changes were also observed in the surrounding regions—contractions were observed in the Boso and the Miura peninsula, northeast of Izu-Oshima, and extensions in the Izu peninsula. To interpret these crustal deformations, a model which consists of a nearly vertical tensile fault and a deflation source is presented. The tensile fault lies parallel to the fissures and is divided into two parts according to depth. The deeper part of the tensile fault is 12 km long, 10 km wide, and has 2 km burial depth and 2.7 m opening displacement. The shallower part, which may represent the fissure craters, is 4 km long, 2 km wide, and the amount of opening is estimated to be 1 m. However, the deflation source may be located at a depth of 10 km beneath the northwestern flank of the caldera and depression just above the source is estimated to be 30 cm. A deflation source is required to explain the subsidence at the Okada tide station and the extension in the Izu peninsula. This model suggests that the eruption might have released tensile stresses in and around the Izu region which result from bending of the subducting Philippine Sea plate. 相似文献
13.
The 2000 Hekla eruption took place from February 26 to March 8. Its seismic expressions were a swarm of numerous small earthquakes related to its onset, and low-frequency volcanic tremor that continued throughout the eruption. A swarm of small earthquakes was observed some 80 min before the onset of the eruption, and the size of the events increased with time. Low-frequency volcanic tremor, with a characteristic frequency band of 0.5–1.5 Hz and dominant spectral peak(s) at 0.7–0.9 Hz, became visible at 18:19 GMT on February 26, marking the onset of the eruption. The tremor amplitude rose quickly and was very high in the beginning of the eruption. However, it soon began to decrease after about an hour. In general, the seismic activity related to the 2000 Hekla eruption was very similar to what was observed in the previous eruption in 1991. Based on knowledge gained from seismicity and strain observations from 1991, this was the first time that a Hekla eruption was predicted.Editorial responsibility: J Stix 相似文献
14.
Volcanic tremor at the Hekla volcano is directly related to eruptive activity. It starts simultaneously with the eruptions and dies down at the end of them. No tremor at Hekla has been observed during non-eruptive times. The 1991 Hekla eruption began on 17 January, after a short warning time. Local seismograph stations recorded small premonitory earthquakes from 16:30 GMT on. At 17:02 GMT, low-frequency volcanic tremor became visible on the seismograph records, marking the onset of the eruption. The initial plinian phase of the eruption was short-lived. During the first day several fissures were active but, by the second day, the activity was already limited to a segment of one principal fissure. The eruption lasted almost 53 days. At the end of it, during the early hours of 11 March, volcanic tremor disappeared under the detection threshold and was followed by a swarm of small earthquakes. At the start of the eruption, the tremor amplitude rose rapidly and reached a maximum in only 10 min. The tremor was most vigorous during the first hour and started to decline sharply during the next hour, and later on more gently. During the eruption as a whole, the tremor had a continuous declining trend, with occasional increases lasting up to about 2 days. Spectral analysis of the tremor during the first 7 h of the eruption shows that it settled quickly, within a couple of minutes, to its characteristic frequency band, 0.5–1.5 Hz. The spectrum had typically one dominant peak at 0.7–0.9 Hz, and a few subdominant peaks. Hekla tremor likely has a shallow source. Particle motion plots suggest that it contains a significant component of surface waves. The tremor started first when the connection of the magma conduit with the atmosphere was reached, suggesting that degassing may contribute to its generation. 相似文献
15.
The 1991 eruption of the Hekla volcano started unexpectedly on 17 January. No long-term precursory seismicity was observed. The first related activity was a swarm of small earthquakes that began approximately half an hour before the eruption. Intensive seismicity, both earthquakes and volcanic tremor, accompanied the violent onset of the eruption. Almost 400 events up to M L magnitude 2.5 were recorded during the first few hours. During the later phases of the eruption, the earthquake activity was modest and the main volcano-related seismic signal was the persistent volcanic tremor. The tremor died away, together with the eruption on 11 March, and Hekla was seismically quiet until the beginning of June 1991, when a sudden swarm of numerous small shallow earthquakes occurred. This activity is atypical for Hekla and is interpreted to be a failed attempt to resume the eruption. 相似文献
16.
The ratio of 87Sr/ 86Sr was measured from different water samples of thermal/mineral (hot spring as well as crater lake) and meteoric origins, in order to specify the location and to verify the detailed model of a volcano-hydrothermal system beneath Zao volcano. The ratio showed a trimodal distribution for the case of thermal/mineral water: 0.7052–0.7053 (Type A, Zao hot spring), 0.7039–0.7043 (Type B, Okama crater lake and Shin-funkiko hot spring), and 0.7070–0.7073 (Type C, Gaga, Aone, and Togatta hot springs), respectively. However, in comparison, the ratio was found to be higher for meteoric waters (0.7077–0.7079). The water from the central volcanic edifice (Type B) was found to be similar to that of nearby volcanic rocks in their Sr isotopic ratio. This indicates that the Sr in water was derived from shallow volcanic rocks. The 87Sr/ 86Sr ratio for water from the Zao hot spring (Type A) was intermediate between those of the pre-Tertiary granitic and the Quaternary volcanic rocks, thus suggesting that the water had reacted with both volcanic and granitic rocks. The location of the vapor–liquid separation was determined as the boundary of the pre-Tertiary granitic and the Quaternary volcanic rocks by comparing the results of this strontium isotopic study with those of Kiyosu and Kurahashi [Kiyosu, Y., Kurahashi, M., 1984. Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan. J. Volcanol. Geotherm. Res. 21, 313–331.]. 相似文献
17.
The Senyama volcanic products of the late Pliocene to early Pleistocene O’e Takayama volcano overlie a 100-m-thick, late Pliocene
coastal quartz-sandstone and are intruded by an early Pleistocene dacite dome. The Senyama volcanic products are the remains
of a cone that retains a basal part 1.5 km across and 150–250 m high from the substrate. The cone comprises dacite block-and-ash
flow deposits and minor base-surge deposits occur at the base. Single beds of the block-and-ash flow deposits are 1–16 m thick
and dip inward 20–40° at the base of the cone and inward or outward 10–20° at the summit. Juvenile fragments in the block-and-ash
flow deposits are non- to poorly vesicular and commonly have curviplanar surfaces and prismatic joints extending inward from
the surfaces, which imply quenching and brittle fracturing of dacite lava. They are variably hydrothermally altered. Nevertheless,
juvenile blocks appear to retain a uniform direction of the magnetization vector residual during thermal demagnetization between
280°C and 625°C. At the time of the eruption, the well-sorted sand of the substrate was at the coast and a good aquifer that
facilitated explosive interaction of water and the ascending dacite lava. The mechanism of the explosion perhaps involved
thermal contraction cracking of the dacite lava, water-inflow into the interior of the lava, and explosive expansion of the
water. Initial phreatomagmatic explosions opened the vent. Succeeding phreatomagmatic or phreatomagmatic–vulcanian explosions
produced block-and-ash flow deposits around the vent. Hydrothermal silver-ore deposits and manganese-oxide deposits occur
in the Senyama volcanic products and the underlying sandstone, respectively. They could represent post-eruptive activity of
the hydrothermal system developed in and around the cone. 相似文献
18.
The andesitic stratovolcano Volcán de Colima is one of the most active volcanoes in Mexico. The recent eruption of Volcán de Colima began in November 1998 and was preceded by a 12-month period of seismic activity that included five earthquake swarms. About 600 events with magnitudes from -0.5 to 2.7 were located within a 50-km 2 area extending northward from the crater of Volcán de Colima to the Pleistocene volcano Nevado de Colima. The majority of hypocenters within this area did not exceed 5 km depth below sea level. We investigated earthquake focal mechanisms and seismotectonic deformations of the volcanic edifice. Focal mechanisms during four earthquake swarms indicated normal faulting associated with extensional processes, which is in agreement with the general stress regime near the volcano revealed by field measurements of fault slips. Earthquakes in the fifth swarm had focal mechanisms associated with inverse faulting, showing a significant change in the stress situation just before the beginning of the eruption. The calculated deformations varied from 1.3᎒ -11 to 2.7᎒ -9. The first swarm of November-December 1997 resulted in a N-S horizontal elongation that was two times greater than the E-W horizontal shortening. The volume was also subject to vertical shortening. The second and third swarms, observed in March and May 1998, showed uniform horizontal N-S and E-W elongations accompanied by a vertical elongation of the volume. In June-July 1998, the situation of November-December 1997 was repeated, with N-S horizontal elongation greater than the E-W horizontal shortening of the volume accompanied by intensive vertical shortening. During the last swarm of October-November 1998, slight E-W elongation of the seismic volume was accompanied by strong N-S shortening and very slight vertical shortening. We assume that the seismic activity prior to the 1998 eruption of Volcán de Colima developed along two intersecting tectonic structures, the N-S-trending Colima rift, and the E-W-trending system of faults associated with Tamazula fault. During the first stage (November 1997-July 1998) the passageway for magma was developed along the Tamazula fault system under horizontal extension without any surface manifestation. In October-November 1998, the seismic events began to cluster along the Colima rift structures under predominantly compressional stresses; this condition culminated with the extrusion of andesitic block lava from the summit crater. 相似文献
19.
Determinations of the local mechanisms of three volcanic earthquakes are given connected with the eruption of the Sheveluch volcano (November, 1964). As initial material the data on first arrivals of P-waves are used. The local mechanism of all three earthquakes is close to a strike-slip type of faulting and similar to the focal mechanism of tectonic earthquakes of Kamchatka. One nodal surface of all the volcanic earthquakes strikes in the same direction as the outbursts of the directed volcano explosions. 相似文献
20.
The chemical and isotopic compositions of volcanic gases at a borehole and a natural fumarole in the Owakudani geothermal
area, Hakone volcano, Japan, have been repeatedly measured since 2001, when a seismic swarm occurred in the area. The CO 2/H 2O and CO 2/H 2S ratios were high in 2001. It increased in 2006 and again in 2008 when seismic swarms occurred beneath the geothermal area.
The observed increases suggest the injection of CO 2- and SO 2-rich magmatic gas into the underlying hydrothermal reservoir, implying that the magmatic gas was episodically supplied to
the hydrothermal system in 2006 and 2008. The earthquake swarms probably resulted from the injection of gas through the shallow
crust accompanying the break of the sealing zone. 相似文献
|