首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Upper Lake is the lifeline of Bhopal City, India for drinking and other water needs. In recent years, environmentalists have expressed their serious concern on deteriorating water quality of this lake. Conventional field sampling methods for monitoring lake water quality lack spatial information about the pollution in the lake. It is desirable to have spatial information about the lake for better management and control. In the present paper the remote sensing data from IRS-1C LISS III have been integrated into a GIS environment to analyse and create a pollution zone map of the Upper Lake.

Spectral reflectance analysis was carried out to find the suitability of wavelengths for determining chlorophyll‐a concentration (chl‐a), suspended solid concentration (SSC) and secchi depth (SD). Empirical models relating spectral reflectance and chl‐a, SSC and SD were developed using least square regression analysis. These models were found valid on unused samples. Chl‐a, SSC and SD distribution maps were generated using proposed models and were incorporated as datalayers in the GIS for further analysis of pollution zones. The spatial information of pollution offered by the pollution zone map could delineate regions of lake having high pollution load. The methodology employed in this work can be used for regular monitoring of the pollution in surface water bodies and serve the data needs for better management of the water quality.  相似文献   

3.
Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities, and natural disasters. Forest fires, which are an integral part of Mediterranean ecosystems, are responsible for the destruction of above-and below-ground vegetation that protects against soil erosion. Under this perspective, the estimation of potential soil erosion, especially after fire events, is critical for identifying watersheds that require management to prevent sediment loss, flooding, and increased ecosystem degradation. The objective of this study was to model the potential post-fire soil erosion risk following a large and intensive wildland fire, in order to prioritize protection and management actions at the watershed level in a Mediterranean landscape. Burn severity and preand post-fire land cover/uses were mapped using an ASTER image acquired two years before the fire, air photos acquired shortly after the fire, and a Landsat TM image acquired within one month after-fire. We estimated pre-and post-fire sediment loss using an integrated GIS-based approach, and additionally we analyzed landscape erosion patterns. The overall accuracy of the severity map reached 83%. Severe and heavy potential erosion classes covered approximately 90% of the total area following the fire, compared to 55% before. The fire had a profound effect on the spatial erosion pattern by altering the distribution of the potential erosion classes in 21 out of 24 watersheds, and seven watersheds were identified as being the most vulnerable to post-fire soil erosion. The spatial pattern of the erosion process is important because landscape cover heterogeneity induced especially by fire is a dominant factor controlling runoff generation and erosion rate, and should be considered in post-fire erosion risk assessment.  相似文献   

4.
The rapid growth of urban population in India is a cause of concern among country??s urban and town planners for efficient urban planning. The drastic growth of urban areas has resulted in sharp land use and land cover changes. In recent years, the significance of spatial data technologies, especially the application of remotely sensed data and geographical information systems (GIS) has been widely used. The present study investigates the urban growth of Tiruchirapalli city, Tamilnadu using IRS satellite data for the years 1989, 1992, 1995, 1998, 2001, 2004, 2007, and 2010. The eight satellite images are enhanced using convolution spatial enhancement method with Kernel (7?×?7) edge enhance function. Supervised classification method is used to classify the urban land use and land cover. The GIS is used to prepare the different layers belonging to various land uses identified from remotely sensed data. The analysis of the results show the drastic increase of built up area and reduced green cover within the city boundary limit.  相似文献   

5.
6.
7.
The present work accentuated the expediency of remote sensing and geographic information system (GIS) applications in groundwater studies, especially in the identification of groundwater potential zones in Ithikkara River Basin (IRB), Kerala, India. The information on geology, geomorphology, lineaments, slope and land use/land cover was gathered from Landsat ETM + data and Survey of India (SOI) toposheets of scale 1:50,000 in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Four categories of groundwater potential zones namely poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for groundwater extraction. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, structures, slope and landforms.  相似文献   

8.
Soil erosion which occurs at spatially varying rate is a widespread threat to sustainable resource management at watershed scale. Thus estimation of soil loss and identification of critical area for implementation of best management practice is central to success of soil conservation programme. The present study focuses application of most widely used Universal Soil Loss Equation (USLE) to determine soil erosion and prioritization of micro-watersheds of Upper Damodar Valley Catchment (UDVC) of India. Annual average soil loss for the entire basin is 23.17 t/ha/yr; for micro-watersheds. High soil loss is observed in 345 micro-watersheds, medium in 159 micro-watersheds and low soil loss is observed in 201 micro-watersheds. It is found that, out of 705 micro-watersheds of UDVC, 453 micro-watersheds are in agreement with AISLUS suggested priority which is based on observed sediment yield, 116 micro-watersheds under predict and 136 micro-watersheds over predict the priority. Geographic Information System (GIS) is applied to prepare various layers of USLE parameters which interactively estimate soil erosion at micro-watershed level. The main advantage of the GIS methodology is in providing quick information on the estimated value of soil loss for any part of the investigated area.  相似文献   

9.
李强  王正志 《遥感学报》1999,3(3):193-198
遥感图像计算机分类的精度问题是阻碍计算机遥感信息处理系统实用化的一个关键问题。将分类后处理中的分类结果平滑过程模型化为约束优化问题,采用神经网络方法把分类结果平滑过程与遥感图像分类过程结合起来,提出了基于约束满足神经网络的遥感信息分类与后处理综合技术。实验表明该方法可明显提高森林类型划分、土地利用调查等遥感应用专题的分类精度。  相似文献   

10.
11.
基于GIS和遥感技术的生态系统服务价值评估研究   总被引:1,自引:0,他引:1  
生态系统能否得到科学、高效、健康的管理,关系到整个人类生活环境的长期稳定发展。随着人们对生态系统管理的过程研究和探讨的加深,其中生态系统服务价值评估已经成为了生态系统管理中的重点。本文主要探讨了基于GIS和遥感技术的生态系统服务价值评估研究在生态系统中的应用,通过以甘肃省草地生态系统为分析案例,建立相关评估系统模型,找到基于GIS和遥感技术的生态系统服务价值评估中更好的应用。  相似文献   

12.
Land is one of the prime natural resources. A city grows not only by population but also by changes in spatial dimensions. Urban population growth and urban sprawl induced land use changes and land transformation. The land transformation is a natural process and cannot be stopped but it can be regulated. Many geographical changes at the urban periphery are associated with the transfer of land from rural to urban purpose. There is an urgent need for fast growing areas like Delhi, which can be easily done by high-resolution remote sensing data. Land use/land cover of North West of Delhi has been analyzed for the time period of 1972?C2003. The remote sensing data used in study is Aster image of 2003 with a spatial resolution of 15?m and other data of 1972 Survey of India (SOI) toposheet at the scale of 1:50,000. Supervised digital classification using maximum likelihood classifier was applied for preparing land use/land cover. A change detection model was applied in ERDAS Imagine to find out the land use/land cover during 1972 to 2003. Eight land use classes was identified but main dominated classes were built up and agricultural land. A drastic change has been recorded during 30 years of time i. e. (1972-2003). In 1972, 92.06% of the land was under agricultural practice, which reduced to 64.71% in 2003. This shows 27.35% decrease in agricultural land in three decades. On the other hand built up area was 6.31% in 1972, which increased to 34% in 2003. One of the main cause of this land use change is the population growth due to the migration in the district from small cities and rural areas of Delhi.  相似文献   

13.
14.
Flash flood assessment and management are necessary for municipal, urban growth planning and emergency action plans. By using the Hydrologic Engineering Centers River Analysis System software, we can model flash flood events and calculate water surface profiles over the length of the modeled stream. After collecting elevation points by using GPS method, the digital elevation model can be calculated for the study area. Najran city has main flood stream passes beside King Abdullah Road based on facts and previous works. A small study area including the mainstream of Wady Najran and King Abdullah Road has chosen as test site. The used methodology has also been proved efficiently for identifying flood inundation maps. Water extent area overlapped by 52–86% for both used methods. At discharge Q = 15 m3/s, the road needs to be protected from the flood.  相似文献   

15.
Salt affected soils are characterized by variable distribution and dynamic nature. Based on Landsat data from 1986/1987 supported by ground truth, salt affected soil maps were prepared at 1:250,000 scale for 14 states and a union territory (UT). A map legend was evolved that described the nature, degree and extent of salt affected soils suitable for varied physiographic and agroclimatic regions of the country. Fifteen categories of salt affected soil were identified for the entire country. These were merged to two categories – saline and sodic – for management purposes. Digitized maps were developed in a geographical information system (GIS) depicting salt affected areas of the country. An area of 6.73 million ha of salt affected soils was estimated for the entire country. State-wise estimates showed that this extensive area is distributed over the Gangetic plain of Uttar Pradesh; the arid and semiarid regions of Gujarat and the peninsular plains of Maharashtra state. A significant area is also located in the coastal region covering seven states. The salt affected soils are primarily saline in deltaic (C), coastal (D) and mud flats/mangrove swamps (G) and sodic in alluvial (A), aeofluvial/aeolian/arid (B) and peninsular (F) plains. The distribution of salt affected soils in agroclimatic zones (ACZs) showed occurrence in Gujarat plain, East Coast plains, Upper-Gangetic plain, Trans-Gangetic plain, Central Plateau, Lower-Gangetic plain and Southern Plateau of the country.  相似文献   

16.
基于GIS的中国东北植被综合分类研究   总被引:53,自引:3,他引:53  
NOAA/AVHRR由于运行周期短、覆盖范围大、成本低、波段宽等特点,目前正越来越广泛地受到人们的普遍关注。在大尺度、中尺度植被遥感上,NOAA/AVHRR具有陆地卫星无法比拟的优势,但在另一方面,NOAAAVHRR也存在分辨率低、数据变形较大和几何畸变较严重等问题。这样,在应用NOAAAVHRR数据进行大区域植被制图时,植被分类的精度仍待提高。本文从理论上探讨了将地理信息系统提供的地理数据与遥感数据复合的可行性;尝试在GIS环境下,将气温、降水、高程3个影响区域植被覆盖的主要指标,按一定的地面网格系统和数学模式进行量化,生成数字地学影像,并使之与经过优化、压缩处理的NOAAAVHRR数据进行复合,对复合后的综合影像进行监督分类。分类结果显示,与传统的应用最大似然分类方法对单一遥感图像分类相比,该综合分类方法分类精度提高了18.3%,该研究方法改变了遥感影像的单一信息结构;丰富了图像的信息含量;完成了地理数据的数字传输、处理、存储及影像化显示。  相似文献   

17.
The area in and around Guntur Town in Andhra Pradesh faces an acute water problem. It represents plain land and gentle slope responsible for infiltration and groundwater recharge. Adequate groundwater resource is reported to be available in the investigated area. It has not been properly exploited. The present investigation is, therefore, undertaken to assess groundwater favourable zones for development and exploration with the help of geomorphological units and associated features. The identified units and features by remote sensing technology with the integration of conventional information and limited ground truths are shallow weathered pediplain (PPS), moderately weathered pediplain (PPM), deeply weathered pediplain (PPD), residual hill (RH) and lineaments (L). The results show that the PPD, PPM and PPS are good, moderate to good and poor to moderate promising zones, respectively for groundwater prospecting. The RH is a poor geomorphological unit in respect to prospective zone as groundwater resource. However, adequate recharge source of groundwater can be expected surrounding the RH, as it acts as surface run-off zone. Lineaments parallel to the stream courses and intersecting-lineaments are favourable indicators for groundwater development. They can also be utilized to augment groundwater resource.  相似文献   

18.
In the present study, The Landsat 7 ETM satellite data was collected for the Sittampundi anorthosites complex and digital image analysis was carried out. The anorthositic rocks available at Sittampundi complex is considered as an equivalent of lunar highland rocks. Hence, a remote sensing study comprises of image analysis and spectral profile analysis was carried out. The satellite data was digitally processed and generated various outputs like band combinations, color composites, stretched outputs, and PCA. The suitable processed outputs were identified for delineating the anorthosite complex. The diagnostic absorption features of reflectance spectra are the sensitive indicators of mineralogy and chemical composition of rocks, which are interest to the planetary scientists. The spectral profile of Landsat ETM plotted for pure and mixed anorthosite pixels and compared with the field and lab reflectance spectra. The percentages of image spectra vary from 30% to 60% for Sittampundi anorthosite. The spectral bands 2, 4 and 6 have low reflectance and bands 3 and 5 have high reflectance. The spectral range of bands 2,3,4,5 and 6 are 525 nm–605 nm, 630 nm–690 nm, 750 nm–900 nm, 1550 nm–1750 nm and 10400 nm–12500 nm respectively. The field spectral curve has weak absorptions at 650 nm and 1000 nm due to the iron transition absorption and low ca- pyroxene respectively available in the anorthosite, matching with the image spectra. However, hyperspectal image with narrow bandwidth could be more useful in selecting the suitable spectrum for remotely mapping the anorthosite region, as equivalent test site for lunar highland region.  相似文献   

19.
20.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号