首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates and configuration of seismic deformation in the North Aegean trough-North Anatolian fault are determined from the moment tensor mechanisms of the earthquakes that occurred within this region. The analysis is based onKostrov's (1974) formulation. The fault plane solutions of the earthquakes of the period 1913–1983 withM s 6.0 are used. The focal mechanism of some of the past events (before 1960) is assumed, based on the present knowledge of the seismotectonics as well as on the macroseismic records of the area studied. The analysis showed that the deformation of the northern Aegean is dominated by EW contraction (at a rate of about 15 mm/yr) which is relieved by NS extension (at a rate of about 9 mm/yr). It was also shown that the northern part of North Anatolia (north of 39.7°N parallel) undergoes contraction in the EW direction (at a rate of about 9 mm/yr) and NS extension as the dominant mode of deformation (at a rate of about 5 mm/yr). It may be stated therefore, that the pattern of deformation of the northern Aegean and the northern part of North Anatolian fault is controlled by the NS extension the Aegean is undergoing as a whole, and the dextral strike-slip motion of the North Anatolian fault. The southern part of North Anatolia is undergoing crustal thinning at a rate of 2.3 mm/yr, NS extension (at a rate of 5 mm/yr) as well as EW extension (at a rate of 4 mm/yr), which are consistent with the occurrence of major normal faulting and justify the separation of North Anatolia into two separate subareas.  相似文献   

2.
This study defines the Late Cenozoic stress regimes acting around the Bolu Basin along the North Anatolian Fault in northwestern Turkey. The inferred regional stress regime, obtained from the inversion of measured fault-slip vectors as well as focal mechanism solutions, is significant and induces the right-lateral displacement of the North Anatolian Fault. The field observations have also revealed extensional structures in and around the Bolu Basin. These extensional structures can be interpreted as either a local effect of the regional transtensional stress regime or as the result of the interaction of the fault geometries of the dextral Duzce Fault and the southern escarpment of the North Anatolian Fault, bordering the Bolu Basin in the north and in the south, respectively.The inversion of slip vectors measured on fault planes indicates that a strike-slip stress regime with consistent NW- and NE-trending σHmax(σ1) and σHmin(σ3) axes is dominant. Stress ratio (R) values provided by inversion of slip vectors measured on both major and minor faults and field observations show significant variations of principal stress magnitudes within the strike-slip stress regime resulting in older transpression to younger transtension. These two stress states, producing dextral displacement along NAF, are coaxial with a consistent NE-trending σ3 axis. The earthquake focal mechanism inversions confirm that the transtensional stress regime has continued into recent times, having identical horizontal stress axis directions, characterized by NW and NE-trending σ1 and σ3 axes, respectively. A locally consistent NE-trending extensional, normal faulting regime is also seen in the Bolu Basin. The stress-tensor change within the strike-slip stress regime can be explained by variations in horizontal stress magnitudes that probably occurred in Quaternary times as a result of the westward extrusion of the Anatolian block.  相似文献   

3.
The North Anatolian Fault (NAF), which extends from Karl?ova in Eastern Turkey to the Gulf of Saros in the Northern Aegean Sea, is one of the longest active strike-slip faults in the world with a length of about 1500 km. Within the North Anatolian Shear Zone (NASZ) there are long splays off the main trunk of the NAF veering towards the interior parts of Anatolia. Although the whole shear zone is still seismically active, the major seismicity is concentrated along the main branch of the NAF. Splays of the NAF dissect the shear zone into different continental blocks. The largest splay of the NAF was selected to analyze the distribution of movements between the faults delimiting these blocks. Four years of GPS measurements and modeling results indicate that the differential motion between the Anatolian collage and the Eurasian plate along the central part of the NAF is partitioned between fault splays and varies between 18.7 ± 1.6 and 21.5 ± 2.1 mm/yr with the main branch taking ∼90% of the motion.  相似文献   

4.
Theoretical considerations of lithosphere deformation across transform plate boundaries predict an expression in terms of 3istributed deformation. The magnitude of rotation is expected to diminish away from the fault zone in a way which depends on the length of the fault, the amount of displacement, and the ductility of the lithosphere. Palaeomagnetic studies across the North Anatolian transform fault zone, which separates the Eurasian Plate and Anatolian Block in northern Turkey, show that clockwise rotations predicted from the sense of dextral motion are indeed present and have attained finite rotations of up to 270° during the 5 Ma history of Neotectonic deformation. Such rotations are, however, confined to narrow ( 10 km wide) zones between system-bounding faults and appear to have resulted from rotation in ball-bearing fashion of equidimensional blocks a few kilometres in size. Outside of this zone only anticlockwise rotations are observed; these are unrelated to deformation across the fault zone and record regional anticlockwise rotation of Turkey which is complementing clockwise rotation of Greece and accompanying Neogene opening of the Aegean Sea. The observed behaviour of continental lithosphere satisfies no plausible value of power law behaviour. We therefore conclude that relative motion across this transform boundary occurs as a discrete zone of intense deformation within a brittle layer comprising the seismogenic upper crust. This is presumed to be detached from a continuum deformation response to shearing in the lower crust and mantle beneath.  相似文献   

5.
The North Anatolian fault is a well-defined tectonic feature extending for 1400 km across Northern Turkey. The space-time distribution of seismicity and faulting of this zone has been examined with a particular emphasis on the identification of possible seismic gaps. Results suggest several conclusions with respect to the temporal and spatial distribution of seismicity. First, the earthquake activity appears not to be stationary over time. Periods of high activity in 1850–1900 and 1940 to the present bracket a period of relatively low activity in 1910–39. Second, there appears to have been a two-directional migration of earthquake epicenters away from a central region located at about 39°E longitude. The migration to the west has a higher velocity (>50 km/yr) than the migration to the east (10km/yr). The faulting associated with successive earthquakes generally abuts the previous rupture. Some existing gaps were filled by later earthquakes.At present there are two possible seismic gaps along the North Anatolian fault zone. One is at the western end of the fault, from about 29° to 30°E. Unless this is a region of ongoing aseismic creep, it could be the site of a magnitude 6 or greater earthquake. The other possible gap is at the eastern end, from about 42° to 43°E, to the west of the unexpected M=7.3 event of 24 November 1976.  相似文献   

6.
A study of stress accumulation in seismic gaps and of stress transfer along linear plate boundaries is presented. Time-dependent reloading of plate boundaries following seismic ruptures is modeled by a modified Elsasser model of a coupled lithosphere/asthenosphere plate system. This model is applied to study a series of large earthquakes in the Aleutian Islands and the Alaska peninsula in 1938–1965. It is found that the Rat Island earthquake and the 1948 earthquake in the central Aleutians are likely to have been triggered by adjacent ruptures, in the sense that their occurrence would have come at a later time had their neighboring segments not been ruptured. Stresses in the Unalaska Gap and the Shumagin gap are at a relatively high level and these segments of the plate boundary may be expected to rupture in the near future. In general, in the ten years (about 16% of the earthquake cycle for the Aleutians) following an earthquake, the stress recovery in the rupture zone is highly nonlinear, resulting in a much more rapid stress accumulation than the linear case. Even at a later stage of an earthquake cycle, adjacent ruptures can cause an acceleration of loading rate in addition to the coseismic stress jump. A good example is the influence of the 1964 Alaska earthquake on the 1938 rupture zone. A general conclusion of this work is that long term earthquake prediction models must take into account the nonlinear stress accumulation behavior in seismic gaps. Also, we have shown the interaction of adjacent plate boundary segments, which suggests that some large earthquakes may have been triggered by nearby ruptures.  相似文献   

7.
Summary The San Andreas fault can be divided into locked and free sections. On the locked sections accumulated slip is released in great earthquakes. On the free sections slip is occurring continuously either aseismically or during smaller earthquakes. Stress drops during earthquakes can be estimated from the ratio of short to long period amplitudes and from surface strain. Surface heat flow may provide an upper bound on the absolute stress. The failure or yield stress must reach a maximum at some depth on the fault. This maximum may occur in the near-surface brittle zone or deeper in the plastic zone of the fault. The historic distribution of seismic activity provides information on the stress level. The accumulation of strain and stress on the fault can be predicted using elastic theory. It is necessary, however, to include the viscous coupling of the lithosphere to the asthenosphere in order to fully model the problem.  相似文献   

8.
9.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

10.
柳畅  石耀霖  郑亮  朱伯靖 《地球物理学报》2012,55(12):3942-3957
华北盆地为我国板内地震多发区域,历史以来相继发生多次破坏性大地震.前人地震勘探与震源定位结果揭示了华北地震的空间分布特征:横向上,华北地震基本发生在地壳的薄弱地带(Moho面上隆),或者地壳厚度的急剧变化带;纵向上,华北地震在地壳一定深度范围内呈现成层分布特征;主震一般在上地壳底部9~15 km深度范围,余震多发生在大约深5~25 km的上地壳与中地壳范围内,在中地壳下层与下地壳中仅有少量或者鲜见有余震发生.为研究解释华北盆地地震空间分布的以上特征,本文建立了华北盆地岩石圈三维黏弹性有限元模型.震源机制和GPS反映华北盆地处于NNE最大主压应力方向挤压,因此对模型边界施以恒定的位移速率边界条件;数值模拟华北岩石圈各层位在数百年以上长期匀速构造挤压作用下的应力积累特征,分析了华北地震空间分布与构造应力积累速率的关系,探讨了地壳结构与地壳分层流变性质对地壳应力积累的影响.计算结果表明,Moho面的隆起与地壳各层位岩石介质的黏滞系数是华北盆地地震孕育的重要因素.华北盆地在构造挤压的持续作用下,Moho面隆起处产生明显应力集中现象.该区域应力在长时期的积累过程中,在脆性的上地壳与中地壳上层,应力表现近于线性增长趋势,上地壳底部较其它深度有最大的应力增长率,其主震可以在应力积累至岩石破裂强度时发生;在脆、韧性转换的中地壳下层,应力增长速率次之,华北地震的大部分余震可能在该层位为主震所触发;而在柔性的下地壳应力增长近于指数形式,稳定状态之后其应力增长速率近于零,而鲜有地震发生.地壳各层位的应力增长率差异与地震成层分布的现象揭示了华北地壳的分层流变性质:脆性(上地壳)-较弱脆性(中地壳上层)-较弱韧性(中地壳下层)-较强韧性(下地壳)-韧性(岩石圈上地幔)的分层流变结构.  相似文献   

11.
华北北部构造应力场   总被引:5,自引:0,他引:5  
黄福明  马廷著 《中国地震》1995,11(2):121-132
本文根据震源机制、原地应力测量、小震应力降和形变测量等资料,结合有限元数值计算的结果,研究了华北北部的构造应力场特征,并根据库仑剪切破裂准则,进一步研究了强震危险区的应力标志。结果表明,强震危险区的应力标志是:(1)最大剪应力相对集中的高值区;(2)围压相对较小的引张区;(3)发震断裂走向与临界走向断裂的走向相同或相近,据此,综合判定研究区未来的强震危险区主要有4个,若依危险程度的大小顺序排列,则  相似文献   

12.
华北地区700年来地壳应力场演化与地震的关系研究   总被引:20,自引:2,他引:20  
目前地震断层相互作用问题已引起地震学家的广泛关注。许多研究表明一条断层的破裂可以影响附近其他断层趋于破裂的进程,两条断层间的确切作用取决于它们的相对位置、破裂机制、错动量和介质力学性质。本研究给出了华北地区700年来由于长期构造加载及地震断层错动导致的累积库仑破裂应力变化(ACCFS)的演化过程。长期构造加载场由GPS观测得到的地壳平均应变率场给出。关于历史地震断层破裂参数的估算,根据的是华北地区有现代仪器记录的大震资料归算地震烈度与断层破裂长度、震级和地震矩的统计关系;根据地质调查得到的地震断层走向、倾角以及本地区的构造应力场方向估计滑动角。考虑粘弹性成层介质地壳模型,计算长期构造加载和地震形变(同震及震后介质粘弹性驰豫变形)造成的累积应力场变化。将累积应力场变化投影到后续地震断层面和滑动方向上得到△CCFS,并研究其对后续地震发生的触发作用。对1303年以来华北地区发生的49个M≥6.5地震研究结果表明:ACCFS对48个后续地震中的38个有触发作用,触发率达到79.2%。应用当今累积应力场变化于华北地区1303年-2003年发生的M≥5地震,我们发现触发率达到75.5%,于1976年以来发生的M≥5地震触发率达82.1%。未被触发的地震中有些是发生在断层破裂区附近的余震,很可能是由于历史地震破裂参量估计的误差落入影区中,若排除这些影响,触发率会更高。研究表明ACCFS与发生的后续地震有很好的相关性。当前ACCFS显著上升的地区包括渤海及其邻域地区、西秦岭北缘断裂带、张家口-渤海地震带西端和太原盆地,其地震危险性应引起重视。  相似文献   

13.
Stress analysis of buried steel pipelines at strike-slip fault crossings   总被引:3,自引:0,他引:3  
Existing analytical methods for the stress analysis of buried steel pipelines at crossings with active strike-slip faults depend on a number of simplifications, which limit their applicability and may even lead to non-conservative results. The analytical methodology presented herein maintains the well-established assumptions of existing methodologies, but also introduces a number of refinements in order to achieve a more wide range of application without any major simplicity sacrifice. More specifically, it employs equations of equilibrium and compatibility of displacements to derive the axial force applied on the pipeline and adopts a combination of beam-on-elastic-foundation and elastic-beam theory to calculate the developing bending moment. Although indirectly, material and large-displacement non-linearities are also taken into account, while the actual distribution of stresses on the pipeline cross-section is considered for the calculation of the maximum design strain. The proposed methodology is evaluated against the results of a series of benchmark 3D non-linear analyses with the finite element method. It is shown that fairly accurate predictions of pipeline strains may be obtained for a wide range of crossing angles and fault movement magnitudes encountered in practice.  相似文献   

14.
C. Sezen 《水文科学杂志》2020,65(11):1909-1927
ABSTRACT

In this study, annual and seasonal precipitation trend analysis was performed in the Euphrates-Tigris basin, Turkey, using innovative trend analysis (ITA) and discrete wavelet transformation. In this context, it was seen that there is a downward trend in winter, spring and annual precipitation, whereas precipitation has an increasing tendency in summer and autumn seasons, in the greater part of the basin. When annual and seasonal data were decomposed into wavelet components, the most significant trends were observed for high-periodic wavelet components, such as D3 (8-year), D4 (16-year) and D5 (32-year), where these components represent the periods of the precipitation data. Then, the relationship between North Atlantic Oscillation (NAO) and trend in precipitation was investigated. In this regard, it was found that there could be a significant relationship between the NAO and precipitation trends of the Euphrates-Tigris basin, especially in winter, based on the wavelet ITA.  相似文献   

15.
INTRODUCTIONThe effect of the Coulomb failure stress change (CFSC) caused by large earthquakes on thelocation and time of subsequent earthquake occurrence have attracted much attention in theseismological community during recent years ( Harris , 1998 ; Stein, 1999) . Many studies ofearthquake cases showedthat the increase in Coulombfailure stress (CFS) could obviously encouragethe occurrence of subsequent moderate-strong earthquakes (Deng and Sykes ,1997 ; Stein,et al .,1997 ;Nalbant…  相似文献   

16.
The collision between the Arabian and Eurasian plates in eastern Turkey causes the Anatolian block to move westward. The North Anatolian Fault (NAF) is a major strike-slip fault that forms the northern boundary of the Anatolian block, and the Erzincan Basin is the largest sedimentary basin on the NAF. In the last century, two large earthquakes have ruptured the NAF within the Erzincan Basin and caused major damage (M s = 8.0 in 1939 and M s = 6.8 in 1992). The seismic hazard in Erzincan from future earthquakes on the NAF is significant because the unconsolidated sedimentary basin can amplify the ground motion during an earthquake. The amount of amplification depends on the thickness and geometry of the basin. Geophysical constraints can be used to image basin depth and predict the amount of seismic amplification. In this study, the basin geometry and fault zone structure were investigated using broadband magnetotelluric (MT) data collected on two profiles crossing the Erzincan Basin. A total of 24 broadband MT stations were acquired with 1–2 km spacing in 2005. Inversion of the MT data with 1D, 2D and 3D algorithms showed that the maximum thickness of the unconsolidated sediments is ~3 km in the Erzincan Basin. The MT resistivity models show that the northern flanks of the basin have a steeper dip than the southern flanks, and the basin deepens towards the east where it has a depth of 3.5 km. The MT models also show that the structure of the NAF may vary from east to west along the Erzincan Basin.  相似文献   

17.
Evolution of 3D tectonic stress field and fault movement in North China   总被引:2,自引:0,他引:2  
IntroductionThe research on stress field interior the Earth is an either relative old or young branch of geoscience. Early in the 20th century, in order to learn the state of inner stress field, a few scholars had used simple ideal model to analyze big scale tectonic conformations and activities according to tide, gravity, rotation and inner thermal materials. So far, lots of problems on the state of the Earth stress field have not been solved completely yet. The origin of stress field, the d…  相似文献   

18.
华北地区地下水开采对地壳应力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
近50年来华北地区遭受持续大面积过量开采地下水,已形成区域地下水漏斗、地面沉降、地陷地裂等地质灾害.然而,地下水的抽取减小了地壳的载荷,造成地壳应力场变化,这一点至今尚未被充分认识.为探索华北地区地下水超采对地壳应力场的影响,本文建立了二维有限元模型,定量计算地下水超采引起地壳变形和应力场变化.结果表明:华北地区地下水开采会引起地表抬升达+12.4 cm;漏斗区上、中地壳的水平拉应力增量分别达到70 kPa和35 kPa;而在地下水开采区外围,水平压应力增量达20 kPa;而华北地区构造主压应力积累速率约为0.5 kPa·a-1.通过对比华北地区1980年前后5级以上地震的分布状况,本文认为地下水开采对区域构造应力场的扰动不可忽略, 其卸载过程可能对华北地区大地震孕震过程存在减缓作用.  相似文献   

19.
The water level in Lake Van has shown alternating rises and decreases in history, causing economical, environmental and social problems over the littoral area. The water level changes were obtained to be in the order of 100 m between 18000 and 1000 B.C., in the order of 10 m between 1000 B.C. and 500 A.D. and relatively stable and fluctuating in the order of a few metres during the past 1500 years. The most recent change of the water level took place between 1987 and 1996, during which the water level increased episodically about 2 m and its altitude changed from approximately 1648.3 m to about 1650.2 m. All these changes were mainly related to climate changes. In this study, the water level changes in the lake after 1860 are compared with the seismic activity of faults lying close to the basin. Temporal correlations of seismicity with the water level changes are very persuasive and dramatic, indicating hydrogeological triggering of the earthquakes. This study shows that 14 M ≥ 5.0 earthquakes and increasing number of 4.0 ≤ M < 5.0 earthquakes accompanied or followed the dramatic (about 1 m or larger) changes of the annual mean of the water level in the lake and that there was a tendency of M ≥ 4 earthquakes to occur between November and February, during which the lake level is low within a year.  相似文献   

20.
The North Anatolian fault zone that ruptured during the mainshock of theM 7.4 Kocaeli (Izmit) earthquake of 17 August 1999 has beenmonitored using S wave splitting, in order to test a hypothesisproposed by Tadokoro et al. (1999). This idea is based on the observationof the M 7.2 1995 Hyogo-ken Nanbu (Kobe) earthquake, Japan.After the Hyogo-ken Nanbu earthquake, a temporal change was detectedin the direction of faster shear wave polarization in 2–3 years after the mainshock (Tadokoro, 1999). Four seismic stations were installed within andnear the fault zone at Kizanlik where the fault offset was 1.5 m, about80 km to the east of the epicenter of the Kocaeli earthquake. Theobservation period was from August 30 to October 27, 1999. Preliminaryresult shows that the average directions of faster shear wave polarization attwo stations were roughly parallel to the fault strike. We expect that thedirection of faster shear wave polarization will change to the same directionas the regional tectonic stress reflecting fault healing process. We havealready carried out a repeated aftershock observation at the same site in2000 for monitoring the fault healing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号