首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
The daily snow cover data from 232 meteorological stations to the west of 105°E in China for the period 1951–2004 were used to classify the snow cover and analyze decadal variations of snow cover types in western China, and comparison was made between the observational data and those retrieved from passive microwave remote sensing data (SMMR and SSM/I) in 1980–2004. The results show that stable snow-covered areas included northern Xinjiang, the Tianshan Mountains, and the eastern Tibetan Plateau with more than 60 snow cover days; no snow cover was found in the center of the southern Xinjiang Basin, the Sichuan Basin, and southern Yunnan. In addition to the above-mentioned, there were unstable snow-covered areas in western China. Furthermore, the snow cover types in northern Xinjiang, the Tianshan Mountains, the Hexi Corridor, and the vast areas from Chengdu to Kunming were unchanged. In the 1980s, the south-north dividing line between the major snow-covered area and snow-free area advanced to its most southern position. The snow cover days calculated from satellite remote sensing were generally longer than those from observational data in western China, mainly in the higher-altitude mountains, the Hexi Corridor, and the western Sichuan Plateau.  相似文献   

2.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

3.
Using the monthly mean data from NCEP–NCAR reanalysis, through building tropopause pressure index, we investigated the mechanisms of anomalous variations of tropopause pressure over the Tibetan Plateau during summer in Northern Hemisphere. For comparative analysis we selected representative years of 1992 and 1998 to study, and they were respectively the highest and the lowest year of tropopause pressure anomaly over the Tibetan Plateau. The results are summarized as follows: (1) Over the Tibetan Plateau, the variations of tropopause pressure are well correlated respectively with anomalous temperature and geopotential height in both troposphere and stratosphere. Besides, the anomalous tropopause pressure has also close relation with anomalous surface temperature in the Tibetan Plateau. In 1992, the surface temperature was anomalously low, correspondingly, the tropopause pressure over the Tibetan Plateau was anomalously high; but in 1998, the opposite was the case. (2) Over the Tibetan Plateau, the correlation of tropopause pressure and OLR (Outgoing Longwave Radiation) is found to be positive. Furthermore, by further diagnosing the circulation fields between 850 hPa and 200 hPa levels and the whole troposphere vapour field, we found out that the anomalously high tropopause pressure in 1992 corresponded to the anticyclonic divergence of low level wind fields and the cyclonic convergence of high level wind fields, and coupled with divergence of the whole troposphere vapour fields along with the South Asian High weakened at the same time. While in 1998, the case was opposite to that in 1992. These facts indicated that the anomalous convection resulted in the significant difference of tropopause pressure in 1992 and 1998 over the Tibetan Plateau. (3) The vertically integrated heat budget anomalies were responsible for explaining tropopause pressure anomalies in 1992 and 1998 over the Tibetan Plateau.  相似文献   

4.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains.A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau,China.We obtained the precipitation from the ice core net accumulation during 1960-2006,and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau.Results showed that during 1960-2006,the precipitation in the high mountains showed firstly an increasing trend,while during 1980 to 2006 it showed an obvious decreasing trend.Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei,and the correlation coefficient was 0.619(P<0.001).However,the precipitation in the high mountain was about 3 times more than that of the lower mountain.The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period,tree-ring reconstructed precipitation,the measured data of multiple meteorological stations in the northeastern Tibetan Plateau,and also the changes of adjacent PDSI drought index.Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO,which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

5.
This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961–2006. We used monthly precipitation and temperature data from 160 stations in China for 1951–2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer precipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming.  相似文献   

6.
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.  相似文献   

7.
Based on the circumfluence situation of the out- and in-Tibet Plateau Vortex (TPV) from 1998-2004 and its weather-influencing system,multiple synthesized physical fields in the middle-upper troposphere of the out- and in-TPV are computationally analyzed by using re-analysis data from National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) of United States.Our research shows that the departure of TPV is caused by the mutual effects among the weather systems in Westerlies and in the subtropical area,within the middle and the upper troposphere.This paper describes the large-scale meteorological condition and the physics image of the departure of TPV,and the main differences among the large-scale conditions for all types of TPVs.This study could be used as the scientific basis for predicting the torrential rain and the floods caused by the TPV departure.  相似文献   

8.
1 Introduction The Tibetan Plateau is gigantic in extent and has the highest elevation and the most complex topography in the world. Its existence is of important significance for the formation of atmospheric circulation, weather and climate in China, much of Asia and even of the globe. Therefore, great attention is given to it. The analyses show that the influencing range of the Tibetan Plateau is the widest during the summer[1]. The powerful updrafts from the plateau warm low flow towar…  相似文献   

9.
A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.  相似文献   

10.
Hydrological processes related to soil moisture play an important role in determining regional and global climate. In this study, using a state-of-art Community Land Model (CLM) developed by the National Center for Atmospheric Research (NCAR), we simulated soil moisture in East Asia and its possible response to global warming through a long off-line experiment under 0.5° (longitude) × 0.5° (latitude) resolution and real atmospheric forcing of the National Center for Environmental Protection/ Department of Energy (NCEP/DOE) reanalysis during 1979 through 2003. The 25-year simulation is examined and compared with limited observations. The results can be summarized as follows: (1) Soil moisture takes time in response to the atmospheric forcing. The equilibration time depends on the depth of the soil and is as much as 20 years in deep layers (>1.5 m); (2) In comparison with observations, the CLM reasonably reproduces the seasonal and inter-annual variability, spatial structure, and vertical pattern of soil moisture in East Asia; (3) The soil tends to be drier in the past 25 years in northeastern Asia-including northern China north of 30°N-while wetter in the southern China and the Tibetan Plateau, especially in summer. Our analysis shows that the regional drying is attributed to increase of the land-surface evaporation induced by global warming.  相似文献   

11.
Due to the difficult logistics in the extreme high elevation regions over the Himala-yas and Tibetan Plateau, the observational meteorological data are very few. In 2003, an automatic weather station was deployed at the northeastern saddle of Mt. Nyainqentanglha (NQ) (30°24′44.3″ N, 90°34′13.1″ E, 5850 m a.s.l.), the southern Tibetan Plateau. In 2005, another station was operated at the East Rongbuk Glacier Col (28°01′0.95″ N, 86°57′48.4″ E, 6523 m a.s.l.) of Mt. Qomolangma. Observational data from the two sites have been com-pared with the reanalysis data from the National Centers for Environmental Predic-tion/National Center for Atmospheric Research (NCEP/NCAR), reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayas/Tibetan Plateau region. The reanaly-sis data can capture much of the synoptic-scale variability in temperature and pressure, al-though the reanalysis values are systematically lower than the observation. Furthermore, most of the variability magnitude is, to some degree, underestimated. In addition, the weather event extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one day ahead of the observational data on Mt. Qomolangma, while on Mt. NQ it occurs basically in the same day.  相似文献   

12.
由于珠穆朗玛峰- 念青唐古拉山脉极高山区特殊的自然环境, 这一带的气象观测资料极其匮乏。2003 年在青藏高原南部念青唐古拉山脉(30o24'44.3"N, 90o34'13.1"E, 5850 m a.s. l.) 建立了自动气象站; 2005 年在珠穆朗玛峰北坡垭口(28o01'0.95"N, 86o57'48.4"E, 6523 m a.s.l.) 建立了自动气象站。利用这两自动气象站的观测资料与NCEP/NCAR 再分析资料进行对比, 检验NCEP/NCAR 再分析数据在喜马拉雅山脉-青藏高原南部一带的可行性。研究结果表明, NCEP/NCAR 再分析资料能够较好地反映气压和气温的天气尺度的变化。但是, 再分析的气压和气温值系统性低于相应观测值, 而且, 某种程度上, 低估了实际的变化幅度; 再分析天气事件, 在珠穆朗玛峰地区, 超前于实际观测一日发生, 而在念青唐古拉地区, 基本上是与观测事件同一日发生。由于受相似大气环流的影响, 珠峰和念青两者之间的观测资料、再分析资料都高度相关。  相似文献   

13.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive relationships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   

14.
青藏高原不同时段气候变化的研究综述   总被引:2,自引:2,他引:0  
1 Introduction The annual mean world temperature increased by about 0.6℃ from the late 1800s to the 1980s (Wang, 1994). The global environmental change is marked with “global warming” and its possible effects on the ecosystem as well as the production …  相似文献   

15.
Vertical differentiation of land cover in the central Himalayas   总被引:1,自引:0,他引:1  
Zhang  Yili  Wu  Xue  Zheng  Du 《地理学报(英文版)》2020,30(6):969-987
Characterized by obvious altitudinal variation, habitat complexity, and diversity in land cover, the Mt. Qomolangma region within the central Himalayas is one of the most sensitive areas to climate change in the world. At the same time, because the Mt. Qomolangma region possesses the most complete natural vertical spectrum in the world, it is also an ideal place to study the vertical structure of alpine land cover. In this study, land cover data for 2010 along with digital elevation model data were used to define three methods for dividing the northern and southern slopes in the Mt. Qomolangma region, i.e., the ridgeline method, the sample transect method, and the sector method. The altitudinal distributions of different land cover types were then investigated for both the northern and southern slopes of the Mt. Qomolangma region by using the above three division methods along with Arc GIS and MATLAB tools. The results indicate that the land cover in the study region was characterized by obviously vertical zonation with the south-six and north-four pattern of vertical spectrum that reflected both the natural vertical structure of vegetation and the effects of human activities. From low to high elevation, the main land cover types were forests, grasslands, sparse vegetation, bare land, and glacier/snow cover. The compositions and distributions of land cover types differed significantly between the northern and southern slopes; the southern slope exhibited more complex land cover distributions with wider elevation ranges than the northern slope. The area proportion of each land cover type also varied with elevation. Accordingly, the vertical distribution patterns of different land cover types on the southern and northern slopes could be divided into four categories, with glaciers/snow cover, sparse vegetation, and grasslands conforming to unimodal distributions. The distribution of bare land followed a unimodal pattern on the southern slope but a bimodal pattern on the northern slope. Finally, the use of different slope division methods produced similar vertical belt structures on the southern slope but different ones on the northern slope. Among the three division methods, the sector method was better to reflect the natural distribution pattern of land cover.  相似文献   

16.
珠穆朗玛峰地区雪冰中重金属浓度与季节变化   总被引:2,自引:0,他引:2  
The concentrations of heavy metals Ba, Pb, Cu, Zn and Co in snow pit collected in September, 2005 from the accumulation area of the East Rongbuk Glacier (6523 m a.s.l.), which lies on the northern slope of Mt. Qomolangma, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations (pg/ml) of heavy metals are Ba2-227, Co2.8-15.7, Cu10-120, Zn29-4948 and Pb14-142, respectively. The δ18O was determined by MAT-252. The time period of the snow pit spans from autumn 2005 to summer 2004. Seasonal variations of the concentrations and δ18O are observed, of which Pb, Cu, Zn and Co are much lower in summer monsoon season than that in non summer monsoon season, suggesting that different sources of heavy metals contributed to the site. EFc (crustal enrichment factors) is Co3.6, Cu27, Pb33 and Zn180, respectively. Higher EFc values of Pb, Cu and Zn suggest that Pb, Cu especially Zn are mainly contributed by anthropogenic sources. Foundation: National Natural Science Foundation of China, No.40501014; No.40871058 Author: Duan Jianping (1981–), Ph.D. Candidate, specialized in climate and environmental change.  相似文献   

17.
西藏高原不同时段雪灾的空间分布及大气环流特征   总被引:1,自引:0,他引:1  
黄晓清  杨勇  石磊 《中国沙漠》2013,33(2):396-402
利用西藏高原38个气象站自建站以来至2008年的10月至翌年4月逐日积雪资料,依据积雪深度和积雪持续日数两项要素组合的雪灾等级指标,分析了前冬、隆冬和春季3个时段西藏高原不同等级雪灾空间分布。结果表明:主要有3个雪灾发生高频中心区,即以聂拉木为中心的喜马拉雅山脉中段区、以嘉黎为中心的那曲地区中东部区及以错那为中心的喜马拉雅山脉东段区;在时段上雪灾主要出现在前冬和隆冬,春季最少,但在前冬和隆冬雪灾频率分布有较大的空间差异;喜马拉雅山脉中段区、阿里地区、那曲站以中灾和重灾为主。利用NCEP/NCAR再分析月平均高度场数据,对区域性雪灾异常年和无雪灾年进行了合成分析,结果表明:前冬和隆冬北半球500 hPa中高纬环流非常相似,自大西洋东海岸向东至西太平有显著的“+-+-”波列,而春季中高纬从欧洲西部为“-+-+-+”波列;3个时段欧洲大陆长波槽脊异常加强,经向环流发展;前冬和隆冬欧亚大陆高度距平场为西高东低,春季正好相反;雪灾年与无雪灾年极涡、乌拉尔山高压脊、贝加尔湖高压脊和北美大槽的强度、位置有较大的差异,而东亚大槽只是春季有所差别外其他时段不明显。  相似文献   

18.
黄河源地区草地退化空间特征   总被引:27,自引:1,他引:26  
There are about 400 million hm2 of grassland in China, which account for 13% of the grassland in the world and 41% of the total land area of China. It is the biggest terrestrial ecosystem in China (Liu et al., 2003). Due to impacts of global change and ec…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号