首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A statistically based runoff‐yield model is proposed in this paper. The model considers spatial heterogeneities of rainfall, soil infiltration capacity and soil water storage capacity that are main factors controlling runoff‐yield process. It assumes that the spatial variation of rainfall intensity at each time step can be characterized by a probability density function, which is estimated by matching the hyetograph through goodness‐of‐fit measure, whereas the spatial heterogeneities of soil infiltration capacity and soil water storage capacity are described by parabola‐type functions. Surface runoff is calculated according to infiltration excess mechanism; the statistical distribution of surface runoff rate can be deduced with the joint distribution of rainfall intensity and soil infiltration rate, thus obtaining a quasi‐analytical solution for surface runoff. Based on saturation excess mechanism, the groundwater flow (flows below the ground are collectively referred to as groundwater flow) is calculated by infiltration and the probability distribution of soil water storage capacity. Consequently, the total runoff is composed of infiltration excess and saturation excess runoff components. As an example, this model is applied to flood event simulation in Dongwan catchment, a semi‐humid region and a tributary of Yellow River in China. It indicates that the proposed runoff‐yield model could achieve acceptable accuracy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Hillslopes turn precipitation into runoff and thus exert important controls on various Earth system processes. It remains difficult to collect reliable data necessary for understanding and modeling these Earth system processes in real catchments. To overcome this problem, controlled experiments are being conducted at the Landscape Evolution Observatory at Biosphere 2, The University of Arizona. Previous experiments have revealed differences in hydrological response between 2 landscapes within Landscape Evolution Observatory, even though both landscapes were designed to be identical. In an attempt to discover where the observed differences stem from, we use a fully 3‐dimensional hydrological model (CATchment HYdrology) to show the effect of soil water retention characteristics and saturated hydraulic conductivity on the hydrological response of these 2 hillslopes. We also show that soil water retention characteristics can be derived at hillslope scale from experimental observations of soil moisture and matric potential. It is found that differences in soil packing between the 2 landscapes may be responsible for the observed differences in hydrological response. This modeling study also suggests that soil water retention characteristics and saturated hydraulic conductivity have a profound effect on rainfall–runoff processes at hillslope scale and that parametrization of a single hillslope may be a promising step in modeling rainfall–runoff response in real catchments.  相似文献   

4.
Surface runoff may be generated when the rainfall intensity exceeds the infiltration capacity, or when the soil profile is saturated with water. Indications exist that both types of overland flow may occur in hilly agricultural loess regions. Here, for a loessial hillslope under maize in the southern part of The Netherlands, it was shown, with pressure head and runoff measurements, that Hortonian overland flow occurs during typical summer rain events. Surface runoff was initiated after saturation of the top 5–10 cm of the soil. Deeper in the soil, unsaturated conditions prevailed while runoff took place. Peak runoff discharges at the outlet of the subcatchment occurred a few minutes after peak rainfall intensities were measured. It appeared that SWMS_2D, a two-dimensional water flow model, was capable in simulating observed pressure head changes and runoff. Simulated potential runoff for the transect studied was higher by a magnitude of three than the measured areal average. This indicates effects of surface ponding, and the probable location of this particular transect in a region with high runoff production.  相似文献   

5.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain basic physical data for the simulation of water flow. A procedure is described which translates a thinly stratified soil profile into a number of functional layers using functional hydrological properties. A functional layer is defined as a combination of one or more soil horizons and should (i) be recognizable during a soil survey using an auger and (ii) show significantly different functional hydrological properties when compared with another functional layer. This procedure gave three easily recognizable functional layers. Sets of hydrological characteristics of these three functional layers were obtained by physical measurements of the soil and by estimation, using textural data for classification into a standard Dutch series. The performance of several combinations of these sets was tested by comparing simulated and measured soil matric potentials for seven plots during one year. The best simulation results were obtained if measured soil hydraulic characteristics were used for relatively homogeneous functional layers and if the soil hydraulic characteristics were estimated at each location for the most heterogeneous layer.  相似文献   

7.
Antecedent soil moisture significantly influenced the hydraulic conductivity of the A1, A2e and B21 horizons in a series of strong texture‐contrast soils. Tension infiltration at six supply potentials demonstrated that in the A1 horizon, hydraulic conductivity was significantly lower in the ‘wet’ treatment than in the ‘dry’ treatment. However in the A2e horizon, micropore and mesopore hydraulic conductivity was lower in the ‘dry’ treatment than the ‘wet’ treatment, which was attributed to the precipitation of soluble amorphous silica. In the B21 horizon, desiccation of vertic clays resulted in the formation of shrinkage cracks which significantly increased near‐saturated hydraulic conductivity and prevented the development of subsurface lateral flow in the ‘dry’ treatment. In the ‘wet’ treatment, the difference between the hydraulic conductivity of the A1 and B21 horizons was reduced; however, lateral flow still occurred in the A1 horizon due to difficulty displacing existing soil water further down the soil profile. Results demonstrate the need to account for temporal variation in soil porosity and hydraulic conductivity in soil‐water model conceptualisation and parameterisation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The formation of deep gullies (called ‘dongas’ locally) in rangeland in KwaZulu-Natal Province in South Africa is a natural phenomenon. These U-shaped, very wide gullies have considerable lateral expansion due to the episodic collapse of sidewalls. The dongas have developed in duplex soils such as Luvisols and Lixisols formed on Permian sedimentary rocks or unconsolidated Quaternary colluvium. This study combined morphological, mineralogical and chemical characterization with measurements of grain-size content, structural stability and the complete shrinkage curve to detect changes in soil properties of the different horizons located in the gully banks. The different soil horizons present clear and sharp differences in physical and mineralogical properties. The topsoil with complete grass cover is very resistant to soil detachment. However, the leached E horizon and the BC horizon have low structural stability. The soil profile down to and including the Bt horizon contains exclusively illite in the clay fraction, while the BC colluvial layer and the C horizon (mudstone) contain expandable interstratified illite–smectite. The Bt horizon has a high water content at saturation and high shrinkage, while the BC and C horizons have a high residual shrinkage and a very low water content at saturation. Because this type of gully expansion is not significantly linked to slope value or the stream power index (SPI) at the gully head, to land-use change, high rainfall intensities or the threshold of concentrated runoff being exceeded at the gully head, other causes were investigated. It was concluded that the heterogeneity between horizons with different mineralogical properties and structural stabilities, soil types and parent material, anisotropic water-saturation and shrink-swell properties are of major importance. This heterogeneity between different soil horizon morphologies and their physical properties can explain why the relationship between the critical slope and the drainage area for gully initiation showed a threshold for gullying much lower than that found elsewhere. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall experiments have been conducted in the laboratory in order to assess the hydrological response of top soils very susceptible to surface sealing and containing rock fragments in different positions with respect to the soil surface. For a given cover level, rock fragment position in the top soil has an ambivalent effect on water intake and runoff generation. Compared to a bare soil surface rock fragments increase water intake rates as well as time of runoff concentration and decrease runoff volume if they rest on the soil surface. For the same cover level, rock fragments reduce infiltration rate and enhance runoff generation if they are well embedded in the top layer. The effects of rock fragment position on infiltration rate and runoff generation are proportional to cover percentage. Micromorphological analysis and measurements of the saturated hydraulic conductivity of bare top soils and of the top layer underneath rock fragments resting on the soil surface reveal significant differences supporting the mechanism proposed by Poesen (1986): i.e. runoff generated as rock flow or as Horton overland flow can (partly) infiltrate into the unsealed soil surface under the rock fragments, provided that they are not completely embedded in the top layer. Hence, rock fragment position, beside other rock fragment properties, should be taken into account when assessing the hydrological response of soils susceptible to surface sealing and containing rock fragments in their surface layers. A simple model, based on the proportions of bare soil surface, soil surface occupied by embedded rock fragments, and soil surface covered with rock fragments resting on the soil surface, describes the runoff coefficient data relatively well.  相似文献   

10.
Surfactants are chemical compounds that can change the contact angle of a water drop on solid surfaces and are commonly used to increase infiltration into water repellent soil. Since production fields with water repellent soil often contain areas of wettable soil, surfactants applied to such fields worldwide will likely be applied to wettable soil, with unknown consequences for irrigation‐induced erosion, runoff, or soil water relations. We evaluated surfactant and simulated sprinkler irrigation effects on these responses for three wettable, Pacific Northwest soils, Latahco and Rad silt loams, and Quincy sand. Along with an untreated control, we studied three surfactants: an alkyl polyglycoside (APG) in solution at a concentration of 18 g active ingredient (AI) kg?1, a block copolymer at 26 g kg?1, and a blend of the two at 43 g kg?1. From 2005 to 2009 in the laboratory, each surfactant was sprayed at a rate of 46·8 l ha?1 onto each soil packed by tamping into 1·2‐ by 1·5‐m steel boxes. Thereafter, each treated soil was irrigated twice at 88 mm h?1 with surfactant‐free well water. After each irrigation, runoff and sediment loss were measured and soil samples were collected. While measured properties differed among soils and irrigations, surfactants had no effect on runoff, sediment loss, splash loss, or tension infiltration, compared to the control. Across all soils, however, the APG increased volumetric water contents by about 3% (significant at p≤0·08) at matric potentials from 0 to ? 20 kPa compared to the control. With a decrease in the liquid–solid contact angle on treated soil surfaces, surfactant‐free water appeared able to enter, and be retained in pores with diameters ≥ 15 µm. All told, surfactants applied at economic rates to these wettable Pacific Northwest soils posed little risk of increasing either runoff or erosion or harming soil water relations. Moreover, by increasing water retention at high potentials, surfactants applied to wettable soils may allow water containing pesticides or other agricultural chemicals to better penetrate soil pores, thereby increasing the efficacy of the co‐applied materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The hydraulic properties of the topsoil control the partition of rainfall into infiltration and runoff at the soil surface. They must be characterized for distributed hydrological modelling. This study presents the results of a field campaign documenting topsoil hydraulic properties in a small French suburban catchment (7 km2) located near Lyon, France. Two types of infiltration tests were performed: single ring infiltration tests under positive head and tension‐disk infiltration using a mini‐disk. Both categories were processed using the BEST—Beerkan Estimation of Soil Transfer parameters—method to derive parameters describing the retention and hydraulic conductivity curves. Dry bulk density and particle size data were also sampled. Almost all the topsoils were found to belong to the sandy loam soil class. No significant differences in hydraulic properties were found in terms of pedologic units, but the results showed a high impact of land use on these properties. The lowest dry bulk density values were obtained in forested soils with the highest organic matter content. Permanent pasture soils showed intermediate values, whereas the highest values were encountered in cultivated lands. For saturated hydraulic conductivity, the highest values were found in broad‐leaved forests and small woods. The complementary use of tension‐disk and positive head infiltration tests highlighted a sharp increase of hydraulic conductivity between near saturation and saturated conditions, attributed to macroporosity effect. The ratio of median saturated hydraulic conductivity to median hydraulic conductivity at a pressure of − 20 mm of water was about 50. The study suggests that soil texture, such as used in most pedo‐transfer functions, might not be sufficient to properly map the variability of soil hydraulic properties. Land use information should be considered in the parameterizations of topsoil within hydrological models to better represent in situ conditions, as illustrated in the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Lirong Lin  Jiazhou Chen 《水文研究》2015,29(9):2079-2088
Rain‐induced erosion and short‐term drought are the two factors that limit the productivity of croplands in the red soil region of subtropical China. The objective of this study was to estimate the effects of conservation practices on hydraulic properties and root‐zone water dynamics of the soil. A 3‐year experiment was performed on a slope at Xianning. Four treatments were evaluated for their ability to reduce soil erosion and improve soil water conditions. Compared with no practices (CK) and living grass strips (GS), the application of polyacrylamide (PAM) significantly reduced soil crust formation during intense rainfall, whereas rice straw mulching (SM) completely abolished soil crust formation. The SM and PAM treatments improved soil water‐stable aggregates, with a redistribution of micro‐aggregates into macro‐aggregates. PAM and SM significantly increased the soil water‐holding capacity. These practices mitigated the degradation of the soil saturated hydraulic conductivity (Ks) during intense rainfalls. These methods increased soil water storage but with limited effects during heavy rainfalls in the wet period. In contrast, during the dry period, SM had the highest soil water storage, followed by PAM and CK. Grass strips had the lowest soil water storage because of the water uptake during the vigorous grass growth. A slight decline in the soil moisture resulted in a significant decrease in the unsaturated hydraulic conductivity (Ku) of the topsoil. Therefore, the hydraulic conductivity in the field is governed by soil moisture, and the remaining soil moisture is more important than improving soil properties to resist short‐term droughts. As a result, SM is the most effective management practice when compared with PAM and GS, although they all protect the soil hydraulic properties during wet periods. These results suggest that mulching is the best strategy for water management in erosion‐threatened and drought‐threatened red soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Considering all the alterations on hydrology and water quality that urbanization process brings, permeable pavement (PP) is an alternative to traditional impermeable asphalt and concrete pavement. The goal of the PP and other low impact development devices is to increase infiltration and reduce peak runoff flows. These structures are barely used in Brazil aiming stormwater management, one of the big hydrological issues in cities throughout the country, with increasing urbanization rates. The main objective of this paper is the hydraulic characterization of a PP and the assessment of its hydrological efficiency from the point of view of the infiltration process. The study focuses on a pilot area in a parking lot in an urban area (Recife, Brazil). Soil elements filling the voids between concrete elements were sampled (particle size density, water contents) and tested with water infiltration experiments at several points of the 3 m × 1.5 m surface pilot area. Beerkan Estimation of Soil Transfer parameters algorithm was applied to the infiltration experiment data to obtain the hydraulic characteristics of the soil composing the PP surface layer, the concrete grid pavers (with internal voids filled with natural soil) permeability being neglected. Results show that the soil hydraulic characteristics vary spatially within the pilot area and that the soil samples have different hydraulic behaviours. The hydraulic characteristics derived from Beerkan Estimation of Soil Transfer parameters analysis were implemented into Hydrus code to simulate runoff, infiltration and water balance over a year. The numerical simulation showed the good potential of the PP for rainfall–runoff management, which demonstrates that PP can be used to retrofit existing parking infrastructure and to promote hydrological behaviour close to natural soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The impacts of tillage practices, majorly conventional tillage (CT) and no-till (NT), on soil hydraulic properties have been studied in recent decades. In this paper, we incorporated an auto-calibration algorithm into the Soil and Water Assessment Tool (SWAT) model and calibrated the model at eight field sites with soil water content (SWC) observations in the Pataha Creek Watershed, WA, USA. The Green–Ampt method in SWAT was chosen to determine infiltration and surface runoff. Parameter uncertainty was quantified by “relatively optimal” parameter sets filtered by a critical objective function value. Cluster analysis was adopted to obtain equal-sized parameter sets for each site and to compare parameter sets between tillage practices. The centers of these clusters were employed as a sample of parameter values. The clustered parameter sets were then used in scenario analysis to examine the impacts of cropland tillage practices on lateral flow, runoff and evapotranspiration (ET). The model parameters (e.g., soil hydraulic properties) were significantly different between CT and NT. In particular, higher bulk density, larger available water capacity, and higher effective hydraulic conductivity were found for NT than for CT. SWCs at three depths of the NT sites were significantly higher than those of CT sites, which could be attributed to tillage practices. However, higher available water capacity at NT sites indicated that the NT soil had a higher capacity to hold water. Thus the mean net changes in SWC during a year were not significantly different between CT and NT. The statistically different model parameters neither resulted in statistical differences in annual outputs (e.g., runoff and ET) nor substantial differences in monthly outputs. Our study indicates that the tillage impacts on hydrological processes are site-specific and scale-dependent.  相似文献   

15.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   

16.
Since 1999, large-scale ecosystem restoration has been implemented in the Loess Plateau, effectively increasing regional vegetation coverage. Vegetation restoration has significantly elevated the saturated hydraulic conductivity (Ks) of the near-surface soil layers and increased the vertical heterogeneity of the Ks profile. Many studies have examined the change of runoff due to revegetation, yet the impacts of Ks profile on the soil moisture distribution and runoff generation processes were less explored. In this study, numerical simulations were conducted to investigate how changes in the Ks profile caused by vegetation restoration influenced the hydrological responses at event scale. The numerical simulation results show that the increase of surface Ks caused by vegetation restoration can effectively reduce runoff at event scale. Moreover, the enhancement of vertical heterogeneity of Ks profiles can significantly change the vertical profile of soil water content, prompting more water to percolate into the deep soil layer. When rainfall exceeds a threshold, the accumulation of soil water above the relatively less permeable layer can cause short-term saturation in shallow soil layers, resulting in a transient perched water table. As a result, after the vegetation restoration in the Loess Plateau, though Horton overland flow is still the main runoff generation mechanism, there is a possibility of the emergence of Dunne overland flow under the high vegetation coverage (e.g., NDVI larger than 0.5). This emergence of new runoff generation mechanism, saturation excess runoff, in the Loess Plateau due to the vegetation restoration could provide scientific guidance for water and sediment movement, soil and water conservation practices, and desertification control in the Loess Plateau.  相似文献   

17.
A limitation of existing models of water and solute movement in fen peats is that they fail to represent processes in the unsaturated zone. This limitation is largely due to a lack of data on the hydraulic properties of unsaturated peat, in particular the relationship between hydraulic conductivity (K) and pressure head (ψ). A tension infiltrometer was used to measure K(ψ) of a fen peat in Somerset, England. It was found that macropores could be important in water and solute movement in this soil type. It was also found that (i) variability of K in this peat was less than that reported for other peats and mineral soils, and (ii) the K data were better described by a log-normal distribution than a normal distribution in accord with findings from other peat and mineral soils. Recommendations on improving the understanding of water and solute movement in the unsaturated zone of this soil type are made. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
Soil hydraulic parameter values for large‐scale modelling cannot be obtained by direct methods. Pedotransfer functions (PTFs) that relate soil hydraulic properties (SHPs) to generally available soil texture data may provide an alternative. A considerable number of PTF models has been developed, the application of three recent PTFs is evaluated. As a first step sets of SHPs derived from the PTFs are compared with measured sets of SHPs for three sites. No good agreement was found statistically between measured and PTF results or between PTF results. As a second step and from a practical point of view results for three hydrologically functional variables were compared and evaluated. The three selected functional variables are saturated hydraulic conductivity, k0, in relation to infiltration excess runoff, available soil water amounts for evapotranspiration and water table depth for a specified upward flux or capillary rise. Derived k0 distributions from PTFs show substantially less variance than from the measured data at all three sites. This can have a considerable impact on infiltration excess runoff, depending on the actual rainfall regime. Simulated available soil water amounts for evapotranspiration for some combinations of PTFs and sites are close to those obtained for measured SHPs, however, no consistency in results can be detected. Water table depths for specified upward flux densities using PTF derived SHPs are generally deeper than those based on measured SHPs and means a potentially higher water availability. Overall, differences in capillary rise among the selected PTFs and between measured and PTF based results are again inconsistent and show no clear relationship with soil texture. Finally, as a third step, effective SHPs were calculated by using spatially averaged texture as PTF input representing areal average behaviour. For these effective SHPs the calculated effective values for the three selected functional variables appear to be close to the areally averaged values obtained with step 2. The selected functional variables thus appear to depend linearly on the PTFs over the range for which the data are representative. This suggests that for our specific PTFs areal mean or effective values for the three functional variables can be obtained fairly accurately from a single measurement of a bulk collection of soil samples as input. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Four large-scale rainfall simulation experiments were conducted in Spain to improve the understanding of the relationship between soil water dynamics, soil erosion and land degradation. On different shrublands and an abandoned field, hydrological characteristics were determined in relation to spatial patterns in soil, vegetation and morphology. During the experiments on shrubland, runoff at fine scales occurred shortly after the start of the experiments. Rapid and non-uniform infiltration near vegetation clusters, related to preferential flowpaths of water, was observed. This prevented the development of runoff over distances larger than 1 metre. The surface redistribution of water was not observed on the abandoned land. Here, little vegetation structure was present and infiltration rates were high below crusts as well as stones. We suggest that the development of spatial structures in vegetation and soil forms a positive feedback with non-uniform infiltration and increased soil water retention. The assessment of land degradation could benefit greatly from acknowledging the importance of non-uniformity in hydrological processes. Furthermore, the presented measurements indicate that in discontinuous environments runoff measurements at fine scales cannot be extrapolated directly. In these environments a scaled approach needs to be adopted emphasizing the importance of different hydrological processes at different scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号