首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
As part of an integrated study of the hydrology, meltwater quality and dynamics of the Haut Glacier d'Arolla, Switzerland, the glacier's drainage network structure was determined from patterns of dye recovery in 342 injection experiments conducted from 47 moulins distributed widely across the glacier. This structure was compared with theoretical predictions based upon reconstructed patterns of water flow governed by (a) the subglacial hydraulic potential surface, and (b) the subglacial bedrock surface. These reconstructions were based on measurements of ice surface and bedrock topography obtained by a combination of ground survey and radio-echo sounding techniques. The two reconstructions simulate the drainage system structures expected for (a) closed channels, in which water is pressurized by the overlying ice, and (b) gravity-driven, open-channel flow. The closed-channel model provides the best fit to the observed structure, even though theoretical calculations suggest that, under summer discharge conditions, open-channel flow may be widespread beneath the glacier. Possible reasons for this apparent discrepancy are discussed.  相似文献   

3.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes the development and testing of a distributed, physically based model of glacier hydrology. The model is used to investigate the behaviour of the hydrological system of Haut Glacier d'Arolla, Valais, Switzerland. The model has an hourly time-step and three main components: a surface energy balance submodel, a surface flow routing submodel and a subglacial hydrology submodel. The energy balance submodel is used to calculate meltwater production over the entire glacier surface. The surface routing submodel routes meltwater over the glacier surface from where it is produced to where it either enters the subglacial hydrological system via moulins or runs off the glacier surface. The subglacial hydrology submodel calculates water flow in a network of conduits, which can evolve over the course of a melt season simulation in response to changing meltwater inputs. The main model inputs are a digital elevation model of the glacier surface and its surrounding topography, start-of-season snow depth distribution data and meteorological data. Model performance is evaluated by comparing predictions with field measurements of proglacial stream discharge, subglacial water pressure (measured in a borehole drilled to the glacier bed) and water velocities inferred from dye tracer tests. The model performs best in comparison with the measured proglacial stream discharges, but some of the substantial features of the other two records are also reproduced. In particular, the model results show the high amplitude water pressure cycles observed in the borehole in the mid-melt season and the complex velocity/discharge hysteresis cycles observed in dye tracer tests. The results show that to model outflow hydrographs from glacierized catchments effectively, it is necessary to simulate spatial and temporal variations in surface melt rates, the delaying effect of the surface snowpack and the configuration of the subglacial drainage system itself. The model's ability to predict detailed spatial and temporal patterns of subglacial water pressures and velocities should make it a valuable tool for aiding the understanding of glacier dynamics and hydrochemistry. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Dye tracing techniques were used to investigate the glacier-wide pattern of change in the englacial/subglacial drainage system of Haut Glacier d'Arolla during the ablation seasons of 1990 and 1991. Analysis of breakthrough curve characteristics indicate that over the course of a melt season, a system of major channels developed by headward growth at the expense of a hydraulically inefficient distributed system. By the end of the melt season, this channel system extended at least 3·3 km from the snout of the 4 km long glacier and drained the bulk of supraglacially derived meltwater passing through the glacier. The upper limit of the channel system closely followed the retreating snowline up-glacier. Rates of headward channel growth reached c. 65 m d−1, although these rates decreased in the upper 1 km of the glacier where snowline retreat exposed a patchy firn aquifer. It appears that the removal of snow (with its high albedo and significant water storage capacity) from the glacier surface resulted in a dramatic increase in the volume of runoff into moulins, and in the peakedness of daily runoff cycles. This induced transient high water pressures within the distributed drainage system, which caused it to evolve rapidly into a channelised system. It is therefore likely that, at a local scale, channel growth occurred down-glacier from moulins, and that the overall up-glacier-directed pattern of channel formation was caused by the retreating snowline exposing new moulins and crevasses to inputs of ice-derived meltwater. Damping of diurnal melt inputs by storage in the firm aquifer accounts for the slowing of channel growth in the upper glacier. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Until now, alpine glacial meltwaters have been assumed to consist of two components, dilute quickflow and concentrated delayed flow, the mixing of which has been regarded as chemically conservative for the major dissolved ions and electrical conductivity. Dye tracing results suggest that this two-component model adequately represents the sub-glacial hydrology of the Haut Glacier d'Arolla, Switzerland. However, laboratory dissolution experiments in which various concentrations of glacial rock flour are placed in dilute solutions show that this rock flour is highly reactive and suggest that bulk meltwaters may acquire significant amounts of solute through rapid chemical reactions with suspended sediment which occur after mixing of the two components. This view is supported by detailed analysis of variations in the hydrochemistry of meltwaters draining from the Haut Glacier d'Arolla over three diurnal cycles during the 1989 melt season. Variations in the composition of bulk meltwaters are controlled by two main factors: dilution of the delayed flow component by quickflow, and the extent of post-mixing reactions. The latter depends on the suspended sediment concentration in bulk meltwaters and on the duration of contact between these waters and suspended sediment. Seasonal changes in the magnitude of these factors result in changes in the character and causes of diurnal variations in meltwater chemistry. In June, these variations reflect discharge-related variations in residence time within a distributed subglacial drainage system; in July, when a channelized drainage system exists beneath the lower glacier, they primarily reflect the dilution of delayed flow by quickflow; in August, when suspended sediment concentrations are particularly high, they reflect varying degrees of solute acquisition by post-mixing reactions with suspended sediment that take place in arterial channels at the glacier bed.  相似文献   

7.
The anion compositions (SO24, HCO3 and Cl) of runoff from the Haut Glacier d'Arolla, Switzerland and Austre Brøggerbreen, Svalbard are compared to assess whether or not variations in water chemistry with discharge are consistent with current understanding of the subglacial drainage structure of warm- and polythermal-based glaciers. These glacial catchments have very different bedrocks and the subglacial drainage structures are also believed to be different, yet the range of anion concentrations show considerable overlap for SO2−4 and HCO3. Concentrations of Cl are higher at Austre Brøggerbreen because of the maritime location of the glacier. Correcting SO2−4 for the snowpack component reveals that the variation in non-snowpack SO2−4 with discharge and with HCO3 is similar to that observed at the Haut Glacier d'Arolla. Hence, if we assume that the provenance of the non-snowpack SO2−4 is the same in both glacial drainage systems, a distributed drainage system also contributes to runoff at Austre Brøggerbreen. We have no independent means of testing the assumption at present. The lower concentrations of non-snowpack SO2−4 at Austre Brøggerbreen may suggest that a smaller proportion of runoff originates from a distributed drainage system than at the Haut Glacier d'Arolla.  相似文献   

8.
Meltwaters collected from boreholes drilled to the base of the Haut Glacier d'Arolla, Switzerland have chemical compositions that can be classified into three main groups. The first group is dilute, whereas the second group is similar to, though generally less concentrated in major ions, than contemporaneous bulk glacial runoff. The third group is more concentrated than any observed bulk runoff, including periods of flow recession. Waters of the first group are believed to represent supraglacial meltwater and ice melted during drilling. Limited solutes may be derived from interactions with debris in the borehole. The spatial pattern of borehole water levels and borehole water column stratification, combined with the chemical composition of the different groups, suggest that the second group represent samples of subglacial waters that exchange with channel water on a diurnal basis, and that the third group represent samples of water draining through a ‘distributed’ subglacial hydraulic system. High NO3 concentrations in the third group suggest that snowmelt may provide a significant proportion of the waters and that the residence time of the waters at the bed in this particular section of the distributed system is of the order of a few months. The high NO3 concentrations also suggest that some snowmelt is routed along different subglacial flowpaths to those used by icemelt. The average SO2−4: (HCO3 + SO2−4) ratio of the third group of meltwaters is 0.3, suggesting that sulphide oxidation and carbonate dissolution (which gives rise to a ratio of 0.5) cannot provide all the HCO3 to solution. Hence, carbonate hydrolysis may be occurring before sulphide oxidation, or there may be subglacial sources of CO2, perhaps arising from microbial oxidation of organic C in bedrock, air bubbles in glacier ice or pockets of air trapped in subglacial cavities. The channel marginal zone is identified as an area that may influence the composition of bulk meltwater during periods of recession flow and low diurnal discharge regimes. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
Measurements of surface velocity, ice deformation (at 42 and 89% ice depth) and proglacial stream discharge were made at Haut Glacier d'Arolla, Switzerland, to determine diurnal patterns of variation in each. Data are analysed in order to understand better the relationship between hydraulically induced basal motion and glacier ice deformation over short timescales. The data suggest that hydraulically induced localized basal ‘slippery’ spots are created over diurnal cycles, causing enhanced basal motion and spatially variable glacier speed‐up. Our data indicate that daily glacier speed‐up is associated with reduced internal deformation over areas previously identified as slippery spots and increased deformation in areas located adjacent to or down‐glacier from slippery spots. We interpret this pattern in terms of a transfer of mechanical support for basal shear stress away from slippery spots to adjacent sticky areas, where the resulting stronger ice–bed coupling causes increased ice deformation near the bed. These patterns indicate that basal ice is subjected to stress regimes that are variable at a high spatial and temporal resolution. Such variations may be central to the creation of anomalous vertical velocity profiles measured above and down‐glacier of basal slippery zones, which have shown evidence for ‘plug flow’ and extrusion flow over annual timescales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Studies of glacier hydrology rely increasingly on measurements made in boreholes as a basis for reconstructing the character and behaviour of subglacial drainage systems. In temperate glaciers, in which boreholes remain open to the atmosphere following drilling, the interpretation of such data may be complicated by supraglacial or englacial water flows to and from boreholes. We report on a suite of techniques used to identify borehole water sources and to reconstruct patterns of water circulation within boreholes at Haut Glacier d'Arolla, Switzerland. Results are used to define a number of borehole ‘drainage’ types. Examples of each drainage type are presented, along with the manner in which they influence interpretations of borehole water‐levels, borehole water‐quality data, and borehole dye traces. The analysis indicates that a full understanding of possible borehole drainage modes is required for the correct interpretation of many borehole observations, and that those observations provide an accurate indication of subglacial conditions only under relatively restricted circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Oxygen isotopic data are presented for bulk glacial meltwaters draining the Haut Glacier d'Arolla, Valais, Switzerland and for the sulphate contained within them in an attempt to assess the redox status of the subglacial chemical weathering environment. The sulphate derived from subglacial chemical weathering is so depleted in 18O that it must have formed, at least partially, in an anoxic environment. Under these conditions, Fe3+ can act as an oxidizing agent and oxygen atoms incorporated into sulphate are derived from 18O‐depleted water molecules (by contrast, dissolved O2 is strongly enriched in 18O). These data therefore support the hypothesis that sectors of the glacier bed are anoxic and that Fe3+ may act as a significant oxidizing agent under these conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of the formation of a major subglacial drainage channel on the behaviour of the subglacial drainage system of Haut Glacier d'Arolla, Switzerland, was investigated using measurements of borehole water level and the electrical conductivity and turbidity of basal meltwaters. Electrical conductivity profiles were also measured within borehole water columns to identify the water sources driving water level changes, and to determine patterns of water circulation in boreholes. Prior to channel formation, boreholes showed idiosyncratic and poorly coordinated behaviour. Diurnal water level fluctuations were small and driven by supraglacial/englacial water inputs, even when boreholes were connected to a subglacial drainage system. This system appeared to consist of hydraulically impermeable patches interspersed with storage spaces, and transmitted a very low water flux. Drainage reorganization, which occurred around 31 July, 1993, in response to rapidly rising meltwater and rainfall inputs, seems to have involved the creation of a connection between an incipient channel and a well-established channelized system located further down-glacier. Once a major channel existed within the area of the borehole array, borehole water level fluctuations were forced by discharge-related changes in channel water pressure, although a diversity of responses was observed. These included (i) synchronous, (ii) damped and lagged, (iii) inverse, and (iv) alternating inverse/lagged responses. Synchronous responses occurred in boreholes connected directly to the channel, while damped and lagged responses occurred in boreholes connected to it by a more resistive drainage system. Pressure variations within the channel resulted in diurnal transfer of mechanical support for the ice overburden between connected and unconnected areas of the bed, producing inverse and alternating patterns of water level response. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Meltwaters collected from the proglacial stream escaping from Zongo Glacier (2·1 km2), Bolivia (16°S), have been monitored in order to analyse the internal drainage system of an Andean glacier. Electrical conductivity has been measured sporadically between February 1995 and March 1996, during 16 one-day field surveys, under various meteorological conditions in summer and winter. The mixing-model technique based on the electrical conductivity is used for a quantitative separation of discharge which is derived from continuous water level registration. Tracer experiments (mainly uranine dye and NaCl salt) have been carried out from March to June 1997 to obtain information about the internal drainage system. In the tropical Andes, accumulation only occurs in austral summer, whereas ablation occurs throughout the year and is higher during the accumulation season, between November and March. The assumptions involved in the use of mixing models for analysis of glacial drainage structure are applicable for tropical glaciers because glacial conduits do not suffer complete closure, and are permanently supplied by meltwaters, even in wintertime. Two components of discharge are separated: an englacial flow originating from surface meltwater which is routed without chemical enrichment, and offering low electrical conductivity; and a subglacial one routed in contact with bedrock or sediments showing high ionic concentrations. Electrical conductivity of meltwater varies diurnally, inversely to discharge fluctuations. According to this behaviour, total discharge is mainly formed by the englacial component. The drainage structures for englacial and subglacial flow have to be widely interconnected, as indicated by diurnal variations of the subglacial discharge. Comparison of hydrograph separation based on conductivity and on 18O isotope confirms that the subglacial flow is influenced by surface melting. A hydrograph separation of the subglacial flow is proposed, between a diurnal variable component, composed of water coming from the englacial network, and a base flow, which may vary seasonally. The dye tracing experiments confirm the drainage complexity of Zongo Glacier and demonstrate the interest of identifying three main drainage components. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
C. R. Fenn  B. Gomez 《水文研究》1989,3(2):123-135
Hourly, at-a-point samples of suspended sediment taken from the outflow stream of Glacier de Tsidjiore Nouve, Switzerland, over a 60 day sampling period (n = 1440) are shown to be dominantly composed of silt-sized particles. Particle size, SEM, and XRD analyses indicate a subglacial provenance for the suspended sediment. Temporal variations in particle size and sorting correspond poorly to fluctuations in water discharge, being dominated by erratic hour-to-hour fluctuations and clockwise hysteresis over diurnal flow events. Examination of grain size and sorting dynamics over snowmelt- and icemelt-related ablation events, during precipitation events, and during glacier drainage events enables some inferences to be drawn regarding sediment source areas and supply regimes. We conclude that although the bulk of the suspended sediment in the proglacial stream of Glacier de Tsidjiore Nouve is derived directly from subglacial sources (with occasional contributions from the valley train during rapid snowmelt and heavy rainfall periods), a portion of the suspended load undergoes intermittent ‘flush-fall’ transfer through the proglacial zone, which acts as a sediment source during rising flows and as a sink during periods of waning flow.  相似文献   

15.
This paper explores patterns within and between climatological and hydrological time series from an alpine glacier basin. Time series recorded in the basin of the Haut Glacier d'Arolla over the 1989 ablation season are subdivided into five subperiods. Box-Jenkins ARIMA (AutoRegressive Integrated Moving Average) and TFN (Transfer Function-Noise) models are estimated for each of the five subperiods and differences between the models are interpreted in the context of changing glacier hydrology, particularly the changing nature and extent of the glacier drainage network.  相似文献   

16.
A one‐dimensional energy and mass balance snow model (SNTHERM) has been modified for use with supraglacial snowpacks and applied to a point on Haut Glacier d'Arolla, Switzerland. It has been adapted to incorporate the underlying glacier ice and a site‐specific, empirically derived albedo routine. Model performance was tested against continuous measurements of snow depth and meltwater outflow from the base of the snowpack, and intermittent measurements of surface albedo and snowpack density profiles collected during the 1993 and 2000 melt seasons. Snow and ice ablation was simulated accurately. The timing of the daily pattern of meltwater outflow was well reproduced, although magnitudes were generally underestimated, possibly indicating preferential flow into the snowpack lysimeter. The model was used to assess the quantity of meltwater stored temporally within the unsaturated snowpack and meltwater percolation rates, which were found to be in agreement with dye tracer experiments undertaken on this glacier. As with other energy balance studies on alpine valley glaciers, the energy available for melt was dominated by net radiation (64%), with a sizable contribution from sensible heat flux (36%) and with a negligible latent heat flux overall, although there was more complex temporal variation on diurnal timescales. A basic sensitivity analysis indicated that melt rates were most sensitive to radiation, air temperature and snowpack density, indicating the need to accurately extrapolate/interpolate these variables when developing a spatially distributed framework for this model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Supraglacial channels are an important mechanism for surface water transport over the ablation zone of western Greenland. The first assessment of the spatio‐temporal distribution of surface melt channels and their relationship to supraglacial lakes over the Jakobshavn Isbræ region of Western Greenland was analysed using Landsat Enhanced Thematic Mapper Plus panchromatic images during the 2007 melt season. A total of 1188 melt channels were delineated and show an increase in the number of melt channels throughout the season, reaching a peak on 9 August. Water‐filled melt channels advanced to a maximum elevation of 1647 m on 9 August and attained a minimum average slope of 0.009 on 8 July. The ablation zone demonstrates two hydrologic modes, where crevasse and moulin terminating channels dominate at elevations <800 m and higher‐order channel networks >800 m. Development of higher‐order networks is interrupted by flow divergence due to partitioning of melt water into vertical infiltration through moulins and crevasse fields prevalent at lower elevations. Tributary and connector networks between 800 and 1200 m in elevation are correlated with fewer lake occurrences, lower surface velocities (~50 m a?1), and ice flow dominated by internal deformation over basal sliding. High‐order channels are associated with lake basins that exceed melt water storage capacity. Evolution of channel networks is coupled to changes in melt water production, runoff, and ice dynamics with implication for the englacial and subglacial environments. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons, Ltd.  相似文献   

18.
Modelling melt and runoff from snow‐ and ice‐covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up‐glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy‐balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open‐channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A well-developed subglacial drainage system consisting of large cavities developed in the lee of bedrock steps connected together by a network of Nye channels is exposed on an area of recently deglaciated limestone bedrock in front of Glacier de Tsanfleuron, Switzerland. This system covers some 51 per cent of the bedrock surface area, and is believed to have transported the bulk of supraglacially-derived meltwaters through the glacier. Using the cavity hydraulics model of Kamb (1987), it is shown that the geometry of the system rendered it stable against collapse by meltback of channel roofs into a tunnel-dominated system. For likely combinations of glacier geometry and meltwater discharge, the steady state water pressure in this system would have been only a small fraction of that required for flotation, and for discharges of less than about 0·5–5 m3 s?1 water would have flowed at atmospheric pressure. The system appears to have adjusted to varying discharges by a combination of varying water pressure and changing the total cross-sectional area of flow by altering the number of active channels connecting cavities. Glacier sliding velocity would have been independent of meltwater discharge for discharges at which water flowed at atmospheric pressure, but would have risen with increasing discharge for higher flows. Velocities on the order of 0·1 m d?1 are predicted for a realistic range of discharges and effective pressures, and these are believed to be plausible. Episodes of enhanced sliding in glaciers with similar drainage systems could be triggered by a rise in meltwater discharge across the threshold between flows at atmospheric pressure and flow under pressure from the glacier.  相似文献   

20.
ABSTRACT

Accurate assessment of stage–discharge relationships in open channel flows is important to the design and management of hydraulic structures and engineering. Flow junctions commonly occur at the confluence of natural rivers or streams. The effect of flow junctions on the stage–discharge relationship at mountain river confluences was found by measuring velocity fields and water levels in experimental models. The results show that the backwater and accumulation–separation at flow junctions affect the flow structures and patterns in the channel; also, flow confluences may induce complex flow characteristics of backwater and flow separation at river junctions, indicating potential submerged flooding disasters within the confluence zone. The impacts of flow junctions on the stage–discharge relationship are investigated for two physical confluence models built from river confluence prototype systems in southwest China. The results show that the presence of tributary river inflows tends to increase the water level of the main river. This is important for flood control, flood-risk evaluation and engineering (e.g. hydropower station construction) in mountain rivers. Finally, a comparative quantitative analysis based on flow motion equations is conducted to evaluate the stage–discharge relationship in both uniform and regular confluence systems. The results indicate that more accurate prediction can be made when taking into account the flow non-uniformity induced by flow separation, backwater and distorted bed in the junction region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号