首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new hydrological and soil erosion model has been developed and tested: LISEM, the Limburg soil erosion model. The model uses physically based equations to describe interception, infiltration and soil water transport, storage in surface depressions, splash and flow detachment, transport capacity and overland and channel flow. From the validation results it is clear that, although the model has several advantages over other models, the results of LISEM 1.0 are far from perfect. Based on the sensitivity analysis and field observations, the main reasons for these differences seems to be the spatial and temporal variability of the soil hydraulic conductivity and the initial pressure head at the basin scale. Another reason for the differences between measured and simulated results is our lack or understanding of the theory of hydrological and soil erosion processes.  相似文献   

2.
Physically based soil erosion simulation models require input parameters of soil detachment and sediment transport owing to the action and interactions of both raindrops and overland flow. A simple interrill soil water transport model is applied to a laboratory catchment to investigate the application of raindrop detachment and transport in interrill areas explicitly. A controlled laboratory rainfall simulation study with slope length simulation by flow addition was used to assess the raindrop detachment and transport of detached soil by overland flow in interrill areas. Artificial rainfall of moderate to high intensity was used to simulate intense rain storms. However, experiments were restricted to conditions where rilling and channelling did not occur and where overland flow covered most of the surface. A simple equation with a rainfall intensity term for raindrop detachment, and a simple sediment transport equation with unit discharge and a slope term were found to be applicable to the situation where clear water is added at the upper end of a small plot to simulate increased slope length. The proposed generic relationships can be used to predict raindrop detachment and the sediment transport capacity of interrill flow and can therefore contribute to the development of physically‐based erosion models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

4.
Over a two-year period, rainfall, runoff and sediment output were measured in six small agricultural catchments (3–10 ha) in south Limburg (The Netherlands). These measurements were needed for validation of an erosion model for South Limburg (LISEM). In this paper, results of the measurements are presented and processes that determine surface runoff and sediment yield during winter and summer rainfall are identified. Before the start of the measurement programme, surface slaking and crust formation on the erodible loess soils were thought to be the main cause of overland flow and soil erosion in South Limburg. This was the starting point for soil conservation measures in the area. The measurement results discussed in this paper show that in some catchments much runoff occurred in winter and that soil moisture storage capacity may be just as important for runoff generation as infiltration capacity. Therefore, when modelling soil erosion and optimizing erosion control measures for South Limburg, runoff generation through Hortonian as well as through saturation overland flow must be considered.  相似文献   

5.
Distributed physically based erosion and phosphorus (P) transport models, run by the overland flow model described in Taskinen and Bruen (2006. Hydrological Processes 20 : this issue), are described. In the erosion model, the additional components to the basic model were the outflow of the particles by infiltration and a new model component, i.e. deposition when rainfall stops. Two ways of calculating the shielding factor due to the flow depth were compared. The P transport model had both dissolved P (DP) and particulate P (PP) components. The processes included in the DP model were desorption from the soil surface, advection, storage in the overland flow and infiltration. The PP model accounted for advection, storage in the flow, infiltration, detachment from the soil surface by flow and rainfall and deposition both when transport capacity of suspended solids (SS) is exceeded and when rainfall ceases. When the models were developed and validated in small agricultural fields of cohesive soil types in southern Finland, comparisons were made between corresponding processes and the significance of added components were estimated in order to find out whether increased model complexity improves the model performance. The sedigraphs were found to follow the dynamics of rainfall, emphasizing the importance of the rainfall splash component. The basic model was too slow to react to changes in rainfall and flow rates, but infiltration and deposition that acts during the cessation in rainfall improved the model significantly by enabling the modelled SS to fall sharply enough. The shielding effect of flow depth from the splash detachment was found to play a significant role. Transport capacity should also be included in erosion models when they are applied to cohesive soils. In this study, the Yalin method worked well. A strong correlation was obvious between the measured SS and total P concentrations, indicating that the main form of P in runoff is PP. This emphasizes the importance of a good sediment transport model in P transport modelling. The submodel used for DP desorption from the soil surface produced plausible results without any calibration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Vito Ferro 《水文研究》1998,12(12):1895-1910
An equation for evaluating the sediment transport capacity of overland flow is a necessary part of a physically based soil erosion model describing sediment detachment and transport as distributed processes. At first, for the hydraulic conditions of small-scale and large-scale roughness, the sediment transport capacity relationship used in the WEPP model is calibrated by Yalin and Govers' equation. The analysis shows that the transport coefficient Kt depends on the Shields parameter, Y, according to a semi-logarithmic (Yalin) or a linear (Govers) equation. The reliability of the semi-logarithmic equation is verified by Smart's, and Aziz and Scott's experimental data. Then the Low's formula, whose applicability is also proved by Smart's, and Aziz and Scott's data, is transformed as a stream power equation in which a stream power coefficient, KSP, depending on Shields parameter, slope, sediment and water-specific weight, appears. A relationship between transport capacity and effective stream power is also proposed. Finally, the influence of rainfall on sediment transport capacity and the prediction of critical shear stress corresponding to overland flow are examined. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Many simplifications are used in modeling surface runoff over a uniform slope. A very common simplification is to determine the infiltration rate independent of the overland flow depth and to combine it afterward with the kinematic-wave equation to determine the overland flow depth. Another simplication is to replace the spatially variable infiltration rates along the slope i(x, t) due to the water depth variations h(x,t) with an infiltration rate that is determined at a certain location along the slope. The aim of this study is to evaluate the errors induced by these simplications on predicted infiltration rates, overland flow depths, and total runoff volume. The error analysis is accomplished by comparing a simplified model with a model where the interaction between the overland flow depth and infiltration rate is counted. In this model, the infiltration rate is assumed to vary along the slope with the overland flow depth, even for homogeneous soil profiles. The kinematic-wave equation with interactive infiltration rate, calculated along the slopy by Richard's equation, are then solved by a finite difference scheme for a 100-m-long uniform slope. In the first error analysis, we study the effect of combining an ‘exact’ and ‘approximate’ one-dimensional infiltration rate with the kinematic-wave equation for three different soil surface roughness coefficients. The terms ‘exact’ and ‘approximate’ stand for the solution of Richard's equation with and without using the overland flow depth in the boundary condition, respectively. The simulations showed that higher infiltration rates and lower overland flow depths are obtained during the rising stage of the hydrograph when overland flow depth is used in the upper boundary condition of the one-dimensional Richard's equation. During the recession period, the simplified model predicts lower infiltration rates and higher overland flow depths. The absolute relative errors between the ‘exact’ and ‘approximate’ solutions are positively correlated to the overland flow depths which increase with the soil surface roughness coefficient. For this error analysis, the relative errors in surface runoff volume per unit slope width throughout the storm are much smaller than the relative errors in momentary overland flow depths and discharges due to the alternate signs of the deviations along the rising and falling stages. In the second error analysis, when the spatially variable infiltration rate along the slope i(x, t) is replaced in the kinematic-wave equation by i(t), calculated at the slope outlet, the overland flow depth is underestimated during the rising stage of the hydrograph and overestimated during the falling stage. The deviations during the rising stage are much smaller than the deviations during the falling stage, but they are of a longer duration. This occurs because the solution with i(x, t) recognizes that part of the slope becomes dry after rainfall stops, while overland flow still exists with i(t) determined at the slope outlet. As obtained for the first error analysis, the relative errors in surface runoff volume per unit slope width are also much smaller than the relative errors in momentary overland flow depths and discharges. The relation between the errors in overland flow depth and discharge to different mathematical simplifications enables to evaluate whether certain simplifications are justified or more computational efforts should be used.  相似文献   

8.
The paper focusses on connectivity in the context of infiltration‐excess overland flow and its integrated response as slope‐base overland flow hydrographs. Overland flow is simulated on a sloping surface with some minor topographic expression and spatially differing infiltration rates. In each cell of a 128 × 128 grid, water from upslope is combined with incident rainfall to generate local overland flow, which is stochastically routed downslope, partitioning the flow between downslope neighbours. Simulations show the evolution of connectivity during simple storms. As a first approximation, total storm runoff is similar everywhere, discharge increasing proportionally with drainage area. Moderate differences in plan topography appear to have only a second‐order impact on hydrograph form and runoff amount. Total storm response is expressed as total runoff, runoff coefficient or total volume infiltrated; each plotted against total storm rainfall, and allowing variations in average gradient, overland flow roughness, infiltration rate and storm duration. A one‐parameter algebraic expression is proposed that fits simulation results for total runoff, has appropriate asymptotic behaviour and responds rationally to the variables tested. Slope length is seen to influence connectivity, expressed as a scale distance that increases with storm magnitude and can be explicitly incorporated into the expression to indicate runoff response to simple events as a function of storm size, storm duration, slope length and gradient. The model has also been applied to a 10‐year rainfall record, using both hourly and daily time steps, and the implications explored for coarser scale models. Initial trails incorporating erosion continuously update topography and suggest that successive storms produce an initial increase in erosion as rilling develops, while runoff totals are only slightly modified. Other factors not yet considered include the dynamics of soil crusting and vegetation growth. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Surface runoff may be generated when the rainfall intensity exceeds the infiltration capacity, or when the soil profile is saturated with water. Indications exist that both types of overland flow may occur in hilly agricultural loess regions. Here, for a loessial hillslope under maize in the southern part of The Netherlands, it was shown, with pressure head and runoff measurements, that Hortonian overland flow occurs during typical summer rain events. Surface runoff was initiated after saturation of the top 5–10 cm of the soil. Deeper in the soil, unsaturated conditions prevailed while runoff took place. Peak runoff discharges at the outlet of the subcatchment occurred a few minutes after peak rainfall intensities were measured. It appeared that SWMS_2D, a two-dimensional water flow model, was capable in simulating observed pressure head changes and runoff. Simulated potential runoff for the transect studied was higher by a magnitude of three than the measured areal average. This indicates effects of surface ponding, and the probable location of this particular transect in a region with high runoff production.  相似文献   

10.
Water is a major limiting factor in arid and semi‐arid agriculture. In the Sahelian zone of Africa, it is not always the limited amount of annual rainfall that constrains crop production, but rather the proportion of rainfall that enters the root zone and becomes plant‐available soil moisture. Maximizing the rain‐use efficiency and therefore limiting overland flow is an important issue for farmers. The objectives of this research were to model the processes of infiltration, runoff and subsequent erosion in a Sahelian environment and to study the spatial distribution of overland flow and soil erosion. The wide variety of existing water erosion models are not developed for the Sahel and so do not include the unique Sahelian processes. The topography of the Sahelian agricultural lands in northern Burkina Faso is such that field slopes are generally low (0–5°) and overland flow mostly occurs in the form of sheet flow, which may transport large amounts of fine, nutrient‐rich particles despite its low sediment transport capacity. Furthermore, pool formation in a field limits overland flow and causes resettlement of sediment resulting in the development of a surface crust. The EUROSEM model was rewritten in the dynamic modelling code of PCRaster and extended to account for the pool formation and crust development. The modelling results were calibrated with field data from the 2001 rainy season in the Katacheri catchment in northern Burkina Faso. It is concluded that the modified version of EUROSEM for the Sahel is a fully dynamic erosion model, able to simulate infiltration, runoff routing, pool formation, sediment transport, and erosion and deposition by inter‐rill processes over the land surface in individual storms at the scale of both runoff plots and fields. A good agreement is obtained between simulated and measured amounts of runoff and sediment discharge. Incorporating crust development during the event may enhance model performance, since the process has a large influence on infiltration capacity and sediment detachment in the Sahel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Upgrading agriculture in semi-arid areas and ensuring its sustainability require an optimal management of rainfall partition between blue and green waters in the farmed water harvesting catchment. The main objective of this study is to analyze the influence of heterogeneous land use on the spatial and temporal variation of rainfall partitioning and blue water production within a typical farmed catchment located in north-eastern Tunisia. The catchment has an area of 2.6 km2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Overland flow and soil water balance components were monitored during two cropping seasons (2000/2001 and 2001/2002) on a network of eleven plots of 2 m2 each with different land use and soil characteristics. The hydrological balances of both the catchment and reservoir have been monitored since 1994.Observed data showed a very large temporal and spatial variability of overland flow within the catchment reflecting the great importance of total rainfall as well as land use. During the 2001/2002 season the results showed a large variation of the number of observed runoff events, from 27 to 39, and of the annual overland flow depths, from 8 mm (under vineyard on calcaric cambisols) up to 43 mm (under shrubs-pasture on haplic regosols), between the plots. The annual runoff amounts were moderate; they always corresponded to less than 15% of the annual rainfall amount whatever the observation scale. It was also observed that changes in land use in years with similar rainfall could lead to significant differences in blue water flow. An attempt for predicting the overland flow by the general linear regression approach showed an r2 of 31%, the predictors used are the class of soil infiltration capacity, the initial moisture saturation ratio of the soil surface layer and the total rainfall amounts.These experimental results indicate that the variation in land use in a semi-arid catchment is a main factor of variation in soil surface conditions and explain the major role played by the former on hydrological behavior of the upstream area and on rainfall partition between overland flow and infiltration. Therefore, to predict the water harvesting capacities in terms of blue water production of a farmed catchment in semi-arid areas it seems essential to consider precisely its land use and its temporal evolution related to management practices.  相似文献   

13.
The integration of a two-dimensional, raster-based rainfall–runoff model, CASC2D, with a raster geographical information system (GIS), GRASS, offers enhanced capabilities for analysing the hydrological impact under a variety of land management scenarios. The spatially varied components of the watershed, such as slope, soil texture, surface roughness and land-use disturbance, were characterized in GRASS at a user-specified grid cell resolution for input into the CASC2D model. CASC2D is a raster-based, single-event rainfall–runoff model that divides the watershed into grid cell elements and simulates the hydrological processes of infiltration, overland flow and channel flow in response to distributed rainfall precipitation. The five-step integration of CASC2D and GRASS demonstrates the potential for analysing spatially and temporally varied hydrological processes within a 50 square mile semi-arid watershed. By defining possible land-use disturbance scenarios for the watershed, a variety of rainfall–runoff events were simulated to determine the changes in watershed response under varying disturbance and rainfall conditions. Additionally, spatially distributed infiltration outputs derived from the simulations were analysed in GRASS to determine the variability of hydrological change within the watershed. Grid cell computational capabilities in GRASS allow the user to combine the scenario simulation outputs with other distributed watershed parameters to develop complex maps depicting potential areas of hydrological sensitivity. This GIS–hydrological model integration provides valuable spatial information to researchers and managers concerned with the study and effects of land-use on hydrological response.  相似文献   

14.
This study developed a one‐dimensional model of downslope rain splash transport based on field experiments and previous studies. The developed model considers soil detachment processes, ground cover, probability densities, and the effect of overland run‐off in preventing detachment. Field monitoring was conducted to observe precipitation run‐off, ground cover, and sediment production on steep hillslopes. Field‐observed data were used to develop the splash detachment rate equation, probability densities for splash transport, and the maximum splash transport distance. Observed and estimated splash transport showed overall agreement, with some differences for small storm events or events with relatively low intensity, probably caused by variation of overland run‐off depth and connectivity as well as differences in soil surface cohesion at various degrees of wetness. Our model can provide insights on the interactions among rainfall intensity, soil surface condition, soil wetness, and splash transport on forested hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The removal of chemicals in solution by overland flow from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface‐mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
On four hillslopes in the loess region of The Netherlands pressure heads were monitored using stand alone measuring devices. During rain events pressure heads were measured regularly with time intervals of five minutes. Rainfall was recorded with a tipping bucket rainfall gauge. Two-dimensional simulations were executed to simulate water flow through these hillslopes during erosive rain events in summer and winter periods. From these simulations it appeared that vertical flow is dominant during rain events, and that lateral water transport is of minor importance despite distinct layer stratifications. During the selected rain showers, average lateral water movement varied between 1.6 and 4.7% of the total water displacement through the hillslopes. Therefore, it was decided to incorporate a one-dimensional water flow module into the event-based distributed soil erosion and hydrological model LISEM.  相似文献   

17.
Estimating overland flow erosion capacity using unit stream power   总被引:2,自引:0,他引:2  
Soil erosion caused by water flow is a complex problem. Both empirical and physically based approaches were used for the estimation of surface erosion rates. Their applications are mainly limited to experimental areas or laboratory studies. The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models. The lack of erosion capacity limitation may cause over estimations of sediment concentration. A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity. The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data. A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value. The coefficients used in the model are calibrated using published laboratory data. The computed results agree with laboratory data very well. A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results. This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.  相似文献   

18.
Most vegetated land surfaces contain macropores that may have a significant effect on the rate of infiltration of water under ponded conditions on the ground surface. Owing to the small-scale variations of the land topography (microtopography), only portions of the land area may get ponded during the process of overland flow. As the macropores transmit water at much higher rates than the primary soil matrix, higher macropore activation in ponded areas produces larger effective infiltration rates into the soil. Therefore, overland flow and infiltration into the macroporous vadose zone are interrelated. Representing the microtopographic variation of the land surface by a simple sine wave function, a method was developed to relate the ponding area to the average ponding depth which was determined by overland flow. A numerical model coupling overland flow and infiltration into the macroporous vadose zone was developed. Overland flow was simulated using the St. Venant equations with the inertia terms neglected. A single macropore model was used to simulate the infiltration into the macroporous vadose zone. The interaction between overland flow and the infiltration into the macroporous vadose zone was analyzed for a hypothetical watershed. The sensitivity analysis revealed that the interaction of macropore flow and overland flow is significant. For the conditions tested, the macropore flow and the overland flow were found to be more sensitive to the macroporosity and less sensitive to the microtopographic surface variation.  相似文献   

19.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   

20.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号