首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

2.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

4.
Freezing characteristics were investigated for a sedge covered floating fen and spruce covered swamp located beside a shallow lake in the Western Boreal Forest of Canada. Thermal properties were measured in situ for one freeze‐thaw cycle, and for two freeze‐thaw cycles in laboratory columns. Thermal conductivity and liquid water content were related to a range of subsurface temperatures above and below the freezing thresholds, and clearly illustrate hysteresis between the freezing and thawing process. Thermal hysteresis occurs because of the large change in thermal conductivity between water and ice, high water content of the peat, and wide variation in pore sizes that govern ice formation. Field and laboratory results were combined to develop linear freezing functions, which were tested in a heat transfer model. For surface temperature boundary conditions, subsurface temperatures were simulated for the over‐winter period and compared with field measurements. Replication of the transient subsurface thermal regime required that freezing functions transition gradually from thawed to frozen state (spanning the ?0·25 to ?2 °C range) as opposed to a more abrupt step function. Subsurface temperatures indicate that the floating fen underwent complete phase change (from water to ice) and froze to approximately the same depth as lake ice thickness. Therefore, the floating fen peatland froze as a ‘shelf’ adjacent to the lake, whereas the spruce covered swamp had a higher capacity for thermal buffering, and subsurface freezing was both more gradual and limited in depth. These thermal properties, and the timing and duration of frozen state, are expected to control the interaction of water and nutrients between surface water and groundwater, which will be affected by changes in air temperature associated with global climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Infiltration of water into two frozen engineered soils of different gradation was studied in laboratory soil columns 1.2 m long and 0.1 m in diameter. Prior to testing, the soil moisture was adjusted to two levels, described by the gravimetric water content of 5% or 10%, and soils were compacted to about 80–90% of the maximum dry density and refrigerated to temperatures ranging from ?8 to ?2 °C. Water with temperatures 8–9 °C was thereafter fed on the top of columns at a constant head, and the times of water breakthrough in the column and reaching a steady percolation rate, as well as the percolation rate, were recorded. The soil water content was a critical factor affecting the thawing process; during freezing, soil moisture was converted into ice, which blocked pores, and its melting required high amounts of energy supplied by infiltrating water. Hence, the thawing of soils with higher initial water content was much slower than in lower moisture soils, and water breakthrough and the attainment of steady percolation required much longer times in higher moisture soils. Heat transfer between infiltrating water, soil ice, and frozen soil particles was well described by the energy budget equations, which constitute a parsimonious model of the observed processes. The finer grained soil and more compacted soil columns exhibited reduced porosity and required longer times for soil thawing. Practical implications of study results for design of bioretention facilities (BFs) in cold climate include the use of coarse engineered soils and fitting bioretention facilities with a drain facilitating soil drainage before the onset of freezing weather. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   

8.
Effects of ice content on the transport of water in frozen soil are studied experimentally and theoretically under isothermal conditions. A physical law, that the flux of water in unsaturated frozen soil is proportional to the gradient of total water content is proposed. Theoretical justification is made by the use of the two-phase flow theory. The experimental results are shown to support the proposed physical law. The results of this study are presented in two parts and this is the second paper describing the theoretical aspects of the study.  相似文献   

9.
Jos C. van Dam 《水文研究》2000,14(6):1101-1117
Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two‐domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute transport. This paper presents a model concept that uses the clay shrinkage characteristics to derive crack volume and crack depth under transient field conditions. The concept has been developed to simulate field average behaviour of a field with cracks, rather than flow and transport at a small plot. Water flow and solute transport are described with basic physics, which allow process and scenario analysis. The model concept is part of the more general agrohydrological model SWAP, and is applied to a field experiment on a cracked clay soil, at which water flow and bromide transport were measured during 572 days. A single domain model was not able to mimic the field‐average water flow and solute transport. Incorporation of the crack concept considerably improved the simulation of water content and bromide leaching to the groundwater. Still deviations existed between the measured and simulated bromide concentration profiles. The model did not reproduce the observed bromide retardation in the top layer and the high bromide dispersion resulting from water infiltration at various soil depths. A sensitivity analysis showed that the amounts of bromide leached were especially sensitive to the saturated hydraulic conductivity of the top layer, the solute transfer from the soil matrix to crack water flow and the mean residence time of rapid drainage. The shrinkage characteristic and the soil hydraulic properties of the clay matrix showed a low sensitivity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Experiments involving six soil types indicated that the production of miniature ice lenses is dependent on soil moisture content and grain size with lenses being produced in finer-grained soils at lower moisture contents than is possible in coarser soils. Explanation of the results involves consideration of the unsaturated hydraulic conductivity of the unfrozen soil through which water migrated to the freezing plane to allow ice lens growth.  相似文献   

11.
The change of frozen soil environment is evaluated by permafrost thermal stability, thermal thaw sensibility and surface landscape stability and the quantitatively evaluating model of frozen soil environment is proposed in this paper. The evaluating model of frozen soil environment is calculated by 28 ground temperature measurements along Qinghai-Xizang Highway. The relationships of thermal thaw sensibility and freezing and thawing processes and seasonally thawing depth, thermal stability and permafrost table temperature, mean annual ground temperature and seasonally thawing depth, and surface landscape stability and freezing and thawing hazards and their forming possibility are analyzed. The results show that thermal stability, thermal thaw sensibility and surface landscape stability can be used to evaluate and predict the change of frozen soil environment under human engineering action.  相似文献   

12.
自适应时间步长法在土体冻结水热耦合模型中的应用   总被引:1,自引:0,他引:1  
由于相变的存在,土体冻结过程中的温度传导与水分迁移是一个复杂的物理过程。为了更好地描述冻结过程中水分与温度的变化规律,通过对不饱和土体水分传导方程的研究,考虑冻结过程中的相变,建立了一维冻土水热耦合模型。给出了相应的差分与有限元程序,并对室内冻结实验进行了模拟。提出误差因子的概念,通过对程序计算中时间步长与计算用时、误差关系的分析,论证了进行时间步长优化的必要性。在两种不同数值方法的对比中,体现了有限元计算的稳定性。提出了调整后的自适应时间步长计算方法。计算结果表明,优化时间步的自适应步长法,在不影响模型计算准确度的前提下,可以大幅减少计算用时,提高计算效率。  相似文献   

13.
14.
Water potential below a frozen soil layer was continuously monitored over an entire winter period (using thermally insulated tensiometers sheltered in a heated chamber) along with other soil, snow and atmospheric variables. In early winter, the freezing front advanced under a thin snow cover, inducing upward soil water flow in the underlying unfrozen soil. The freezing front started to retreat when the snow cover became thick enough to insulate the soil, resulting in the reversal of the flow direction in the unfrozen zone. These data provide a clear illustration of soil water dynamics, which have rarely been monitored with a tensiometer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Recently, there has been a revival in the development of models simulating coupled heat and water transport in cold regions. These models represent significant advances in our ability to simulate the sensitivity of permafrost environments to future climate change. However, there are considerable differences in model formulations arising from the diverse backgrounds of researchers and practitioners in this field. The variability in existing model formulations warrants a review and synthesis of the underlying theory to demonstrate the implicit assumptions and limitations of a particular approach. This contribution examines various forms of the Clapeyron equation, the relationship between the soil moisture curve and soil freezing curve, and processes for developing soil freezing curves and hydraulic conductivity models for partially frozen soils. Where applicable, results from recent laboratory tests are presented to demonstrate the validity of existing theoretical formulations. Identified variations in model formulations form the basis for briefly comparing and contrasting existing models. Several unresolved questions are addressed to highlight the need for further research in this rapidly expanding field.  相似文献   

16.
Snow and frozen soil prevail in cold regions worldwide, and the integration of these processes is crucial in hydrological models. In this study, a combined model was developed by fully coupling a simultaneous heat and water model with a geomorphologically based distributed hydrological model. The combined model simulates vertical and lateral water transfer as well as vertical heat fluxes and is capable of representing the effects of frozen soil and snowmelt on hydrological processes in cold regions. This model was evaluated by using in situ observations in the Binggou watershed, an experimental watershed for cold region hydrology of the Watershed Allied Telemetry Experimental Research Project. Results showed that the model was able to predict soil freezing and thawing, unfrozen soil water content, and snow depth reasonably well. The simulated hydrograph was in good agreement with the in situ observation. The Nash–Sutcliffe coefficient of daily discharge was 0.744 for the entire simulation period, 0.472 from April to June, and 0.711 from June to November. This model can improve our understanding of hydrological processes in cold regions and assess the impacts of global warming on hydrological cycles and water resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
以黑龙江干流堤防工程实际环境为研究基础,依托水分迁移试验装置,测试了干流堤防典型砂性土试样在冻融循环下的温度场、水分场、应力场的分布情况。结果表明:堤顶混凝土公路破坏与堤身不均匀沉降有关,温度变化引起堤基含水率出现梯度变化,从而出现应力场变化,且温度梯度含水率梯度呈线性关系。地基稳定冻结深度达到1.12 m。结合实测数据建立季节性冻土区堤防基础的水、热、力三场耦合模型,最后利用ANSYS有限元分析软件进行模拟分析,证明该模型在堤防工程上的实用性。  相似文献   

19.
Macropores are a relatively small proportion of the soil volume, but they play an important role in the movement of water and chemicals owing to occasional rapid fluxes through them. The occurrence of macropore flow does not depend on the water content (or potential) of the bluk matrix unless the soil is close to saturation, but depends instead principally upon surface boundary conditions. Accordingly, three control situations of infiltration are recognized: macropore control, application control, and matrix control. These three situations indicate that the two-domain system may be a proper approach for the simulation of macropore soil. In this conceptualization, macropores are defined as channeling pores of different radii in which the flux density (with unit hydraulic gradient) occurring in the minimum sizes of such pores is greater than or equal to the saturated matrix hydraulic conductivity. Recognizing the two structural domains of the macropore and matrix, and possible water flow situations, three flow regions are suggested: matrix, macropore, and transaction. The matrix and the macropore are the two domains, and the transaction represents the exchange of water between the matrix and the macropore. The classic approach of the Richards equation is applicable to describe the flow in the matrix domain. The Hagen-Poiseuille and the Chezy-Manning equations for tube flow can be applied to represent the relationship between the hydraulic conductivity of the macroporosity and the total macroporosity, where the total macroporosity is defined as the ratio of the summed macropore cross-sectional area and the total soil cross-sectional area. An equation describing water flow in the macropore domain is then obtained.  相似文献   

20.
寒区土与结构接触面冻结强度可以视为是与土性、温度、含水量、界面粗糙度、法向压力等诸多因素直接相关的复杂函数形式,并直接影响到上部结构的承载能力及稳定性。以青藏高原黏土与不同粗糙度的钢板结构接触面为研究对象,通过不同含水率、不同温度及不同法向压力下冻结黏土与钢板结构接触面的直剪正交试验,研究土与结构接触面冻结强度的影响因素及影响程度大小,并对冻结强度的变化规律进行初步分析和探讨。研究结果表明含水量对抗剪强度的影响最大,在不同影响因素共同作用下,界面抗剪强度最小值为0.13 MPa,最大值为0.45 MPa。界面抗剪强度随含水量的增加、温度的升高而明显降低,随界面法向压力和粗糙度的增大呈明显增大趋势。界面强度基本可通过摩尔-库仑准则,利用界面的黏聚力和内摩擦角进行表示,并在文中给出了界面强度的参考值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号