首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas-source intercomparison data from three Precambrian locations, reproducing to within 0.1 to 0.2 percent in each ratio at the 95 percent level, have been normalized through the Broken Hill standard to the NBS lead, SRM 981. The bedded Pb-Zn deposits at Mount Isa and McArthur River show the marked isotopic uniformity long associated with major stratiform deposits. At Mount Isa this uniformity extends meridionally for at least 35 km, and over the full depth of the host formation. It encompasses samples of fault-fill sulphides within the mine area, thus emphasizing the dominance of the ore lead during subsequent remobilization. At McArthur River there is strong evidence that veins cutting the adjacent formations comprise a mixture of ore Pb with material of different provenance; the evidence for comparable mixtures at Mount Isa is not strong. At the intervening Law Hill field, the Pb in vein deposits is similar to the more extreme of the McArthur River vein leads. This could possibly indicate a geochemical and age similarity between the source rocks in these two widely-separated areas.  相似文献   

2.
The Urquhart Shale from Mount Isa, Queensland, hosts major lead-zinc and copper orebodies. Re-examination of organic matter from the lead-zinc ore bodies has shown that abundant microfossils characteristic of lacustrine environments are present, and substantiates earlier results of Love and Zimmerman (1961). The framboid residues described by these authors are not microfossils but nevertheless the occurrence of framboidal pyrite has important implications for the timing of lead-zinc mineralisation. A diagenetic model is proposed for the lead-zinc ore bodies, and a later transgressive event accounts for the mode of occurrence of the copper ore bodies.  相似文献   

3.
长江中、下游地区块状硫化物矿床普遍受到燕山期岩浆及其热液的改造与叠加.本文以铜陵冬瓜山矿床为例,探讨这类矿床的成矿机制.该矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.野外地质观察及室内矿相学的研究表明,冬瓜山层状矿体中矿石遭受了强烈的热变质作用及热液交代作用.进变质过程中形成的结构主要为黄铁矿受燕山期岩浆侵...  相似文献   

4.
The subeconomic Mount Novit Zn-Pb-Ag deposit is located approximately 20 km south of Mount Isa, Queensland. In contrast to the nearby Mount Isa, Hilton and George Fisher Zn-Pb-Ag deposits, mineralisation at Mount Novit is situated to the west of the regional-scale Mount Isa Fault and is hosted in the Moondarra Siltstone as opposed to the Urquhart Shale. Lower-grade (<4 wt.% Zn + Pb) Zn-Pb-Ag mineralisation primarily replaces pre-existing carbonate alteration and veining and consists of pyrrhotite, pyrite and sphalerite with lesser galena. Higher-grade (>10 wt.% Zn + Pb) mineralisation occurs as a matrix supported breccia dominated by sphalerite and pyrrhotite with galena, pyrite, and magnetite. In-situ U–Pb geochronology was completed on apatite and two textural varieties of monazite. Fine-grained (<50 µm) subhedral to anhedral monazite is located within highly foliated biotite alteration directly adjacent Zn-Pb-Ag mineralisation and yields a mean weighted 207Pb/206Pb age of 1527 ± 18 Ma (MSWD = 1.06). This age is consistent with the formation of highly foliated biotite alteration during D3 deformation of the Isan Orogeny. Apatite from the same fabric yields a lower intercept age of 1443 ± 29 Ma (MSWD = 1.30). Consistent with previous studies, this age is interpreted to represent the age of a major thrusting event along the Mount Isa Fault that resulted in the cooling of the Mount Novit area below ~375 °C. Coarse-grained monazite is coeval with Zn-Pb-Ag mineralisation and yields a mean weighted 207Pb/206Pb age of 1457 ± 11 Ma (MSWD = 0.28). Sphalerite from Mount Novit has low concentrations (<1 ppm) of Ge and Ga and a relatively high concentration of In (5 to >10 ppm), possibly reflecting the leaching of the metals from an underlying basement unit. The GGIMFis geothermometer (Frenzel et al., 2016) produced a mean formation temperature of 345 ± 52 °C. The timing and temperature of Zn-Pb-Ag mineralisation is consistent with the age and cooling temperature of apatite presented in this study. Based on these correlations, we suggest that Zn-Pb-Ag mineralisation at Mount Novit was emplaced during an episode of major thrusting along the Mount Isa Fault, with the precipitation of Zn-Pb-Ag mineralisation driven by the cooling of the Mount Novit area below ~375 °C. A key implication of this study is a new model for synorogenic Zn-Pb-Ag mineralisation to the south of Mount Isa, which contrasts with the widely accepted regional-scale syngenetic metallogenic model.  相似文献   

5.
Mercury concentrations of four Australian stratiform lead-zinc-silver deposits of Proterozoic age are not directly related to their metamoprhic grade and are probably determined by local factors. Average mercury contents of H. Y. C. mineralization (unmetamorphosed) is 1300 ppb, Mount Isa ore (greenschist facies) 8300 ppb, Squirrel Hills mineralization (amphibolite facies) 100 ppb, and Broken Hill ore (granulite facies) ranges from 1000 ppb for A lode to 37000 ppb for No. 3 lens. In present-day sulfidic muds from the Coorong region of South Australia, mercury is present as mercury sulfide either as inclusions or chemisorbed on mackinawite. This may be analogous to the manner of mercury occurrence in sediments which predated the ingress of lead-zinc-silver mineralization into ancient basins. In bedded H. Y. C. mineralization mercury is present principally in pyrite, but recrystallized mineralization contains mercury in both sphalerite and pyrite. In bedded Mount Isa ore mercury is present in sphalerite, but in remobilized ore which is enriched in galena, freibergite and pyrrhotite, it occurs in both sphalerite and freibergite. Mineralization from Squirrel Hills contains no tetrahedrite, and sphalerite is the host for most mercury. Normal Broken Hill ore contains mercury parti tioned approximately evenly between sphalerite and tetrahedrite, but mercury is enriched in remobilized ore. Veins generated during retrograde metamorphism of the Broken Hill lodes contain high levels of mercury, and multiple veins produced in this fashion around other deposits could result in mercury haloes that can be detected during exploration programs. The way mercury is held in stratiform leadzinc-silver deposits, and the lack of decrease of mercury contents with increasing metamorphic grade, rules out total loss of mercury during metamorphism. Primary mercury haloes around this type of mineralization are due to mercury in disseminated ore-forming minerals or late-stage vein systems contain secondary mercury-bearing minerals.  相似文献   

6.
Twenty eight electron microprobe analyses of freibergite from the Mount Isa (Queensland) Pb-Zn-Ag stratiform orebody, range in silver content from 18.4 to 42.5 wt. % Ag. These values significantly extend the tetrahedrite-freibergite series. The compositional range based on twenty-one complete analyses is indicated by the formula (Ag,Cu)9.21–11.44(Fe,Zn)1.59–2.31(Sb,As)3.87–4.43S13.0. As far as could be determined, Mount Isa freibergite is homogeneous and no marked compositional changes were detected either across individual grains, or in different grains of the same electron microprobe sample. The linear, atom for atom, replacement of copper by silver reported for lower silver bearing tetrahedrites continues in Mount Isa freibergite. A maximum silver content of about 51 wt. % Ag is predicted. X-ray investigations indicate however that in contrast to the structural expansion with increasing silver content reported for argentian tetrahedrite, Mount Isa freibergite contracts with increase in silver. The extrapolated lattice parameter for the theoretical freibergite (Ag10(Fe,Zn)2Sb4S13) end member is of the same order as tetrahedrite.  相似文献   

7.
安徽铜陵冬瓜山矿床是长江中下游地区具有代表性的大型层状硫化物矿床,磁黄铁矿为矿床中的主要硫化物矿物.该矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.在层状矿体上部,磁黄铁矿主要为块状构造,而层状矿体下部,磁黄铁矿多为层纹状、条带状构造,具有显著的沉积结构构造特征.野外地质观察及室内矿相学研究表明,层状矿体中磁黄铁矿矿石遭受了强烈的变质作用及热液交代作用.进变质过程中形成的结构主要为胶黄铁矿转变为黄铁矿以及进一步变质转变为磁黄铁矿、磁铁矿时形成的交代残留结构.退变质过程则以磁黄铁矿的退火、黄铁矿变斑晶的生长和单纯六方磁黄铁矿的形成为特征.岩浆热液对单纯六方磁黄铁矿的交代作用形成了单斜和六方磁黄铁矿的交生结构.这些结构特征表明层状矿体中的磁黄铁矿并不是岩浆热液成因,而主要为石炭纪同生沉积胶黄铁矿、黄铁矿在燕山期岩浆侵入所引起的热变质作用下脱硫所形成,并在热变质作用之后又受到岩浆热液的叠加交代.磁黄铁矿的结构特征显示冬瓜山矿床的形成经历了同生沉积、热变质、热液交代等多个阶段,支持其为同生沉积-叠加改造型矿床.  相似文献   

8.
The Palaeoproterozoic Eastern Creek Volcanics are a series of copper-rich tholeiitic basalts which occur adjacent to the giant sediment-hosted Mount Isa copper deposit in Queensland, Australia. The volcanic rocks are often cited as the source of metals for the deposit. New laser ablation ICP-MS analyses of iron–titanium oxides from the basalts provide evidence for the local mobilisation of copper during regional greenschist facies metamorphism. This interpretation is based on the observation that copper-bearing magmatic titanomagnetite was destabilised during greenschist facies metamorphism, and the new magnetite which crystallised was copper poor. Petrological observations, regional geochemical signatures and geochemical modelling suggest that the mobilised copper was concentrated in syn-metamorphic epidote-rich alteration zones, creating a pre-concentration of copper before the main mineralisation event at Mount Isa. Geochemical modelling demonstrates this process is enhanced by the addition of CO2 from adjacent carbonate-rich sediments during metamorphic devolatilisation. Regional geochemical data illustrate elevated copper concentrations in epidote-rich zones (high CaO), but where these zones are overprinted by potassic alteration (high K2O), copper is depleted. A two-stage model is proposed whereby after metamorphic copper enrichment in epidote–titanite alteration zones, an oxidised potassium-rich fluid leached copper from the epidote-altered metabasalts and deposited it in the overlying sedimentary rocks to form the Mount Isa copper deposit. This ore-forming fluid is expressed regionally as potassium feldspar-rich veins and locally as biotite-rich alteration, which formed around major fluid conduits between the metabasalt metal source rocks and the overlying deposit host sequence. This model is consistent with the remobilisation of copper from mafic source rocks, as has been found at other world-class copper deposits.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
The Valhalla uranium deposit, located 40 km north of Mount Isa, Queensland, Australia, is an albitite-hosted, Mesoproterozoic U deposit similar to albitite-hosted uranium deposits in the Ukraine, Sweden, Brazil and Guyana. Uranium mineralisation is hosted by a thick package of interbedded fine-grained sandstones, arkoses and gritty siltstones that are bound by metabasalts belonging to the ca. 1,780 Ma Eastern Creek Volcanics in the Western Succession of the Mount Isa basin. Alteration associated with U mineralisation can be divided into an early, main and late stage. The early stage is dominated by laminated and intensely altered rock comprising albite, reibeckite, calcite, (titano)magnetite ± brannerite. The main stage of mineralisation is dominated by brecciated and intensely altered rocks that comprise laminated and intensely altered rock cemented by brannerite, apatite, (uranoan)-zircon, uraninite, anatase, albite, reibeckite, calcite and hematite. The late stage of mineralisation comprises uraninite, red hematite, dolomite, calcite, chlorite, quartz and Pb-, Fe-, Cu-sulfides. Brannerite has U–Pb and Pb–Pb ages that indicate formation between 1,555 and 1,510 Ma, with significant Pb loss evident at ca. 1,200 Ma, coincident with the assemblage of Rodinia. The oldest ages of the brannerite overlap with 40Ar/39Ar ages of 1,533 ± 9 Ma and 1,551 ± 7 Ma from early and main-stage reibeckite and are interpreted to represent the timing of formation of the deposit. These ages coincide with the timing of peak metamorphism in the Mount Isa area during the Isan Orogeny. Lithogeochemical assessment of whole rock data that includes mineralised and unmineralised samples from the greater Mount Isa district reveals that mineralisation involved the removal of K, Ba and Si and the addition of Na, Ca, U, V, Zr, P, Sr, F and Y. U/Th ratios indicate that the ore-forming fluid was oxidised, whereas the crystal chemistry of apatite and reibeckite within the ore zone suggests that F and were important ore-transporting complexes. δ18O values of co-existing calcite and reibeckite indicate that mineralisation occurred between 340 and 380°C and involved a fluid having δ18Ofluid values between 6.5 and 8.6‰. Reibeckite δD values reveal that the ore fluid had a δDfluid value between −98 and −54‰. The mineral assemblages associated with early and main stages of alteration, plus δ18Ofluid and δDfluid values, and timing of the U mineralisation are all very similar to those associated with Na–Ca alteration in the Eastern Succession of the Mount Isa basin, where a magmatic fluid is favoured for this style of alteration. However, isotopic data from Valhalla is also consistent with that from the nearby Mount Isa Cu deposit where a basinal brine is proposed for the transport of metals to the deposit. Based on the evidence to hand, the source fluids could have been derived from either or both the metasediments that underlie the Eastern Creek Volcanics or magmatism that is manifest in the Mount Isa area as small pegmatite dykes that intruded during the Isan Orogeny.  相似文献   

10.
粤北大宝山铜多金属矿床一直存在燕山期岩浆热液成因和海西期火山喷流成因之争,争议的焦点在于块状、似层状硫化物矿体的成因。本文在全面开展矿区地质调查和钻探查证的基础上,对块状、似层状和脉状硫化物矿石中的黄铁矿和磁黄铁矿开展EPMA和LA-ICP-MS原位分析。测试结果表明,不同产状黄铁矿的平均分子式相似,分别为FeS_(1.98)、FeS_(1.99)和FeS_(1.98),似层状和脉状硫化物中磁黄铁矿的平均化学式为Fe_(0.886)S和Fe_(0.874)S,属形成温度相对较低单斜磁黄铁矿。与花岗岩岩浆热液标型黄铁矿相比,不同产状的黄铁矿和磁黄铁矿中Co、Ni、Mn、Se和Ge等元素以类质同象形式赋存,它们含量较低但稳定,Cu、Pb、Zn、Ag、Bi和Tl及Ga主要以微细矿物子晶形式存在,其含量丰富,但变化明显。从块状、似层状到脉状硫化物矿体,黄铁矿和磁黄铁矿中Co、Zn和Se的含量及Co/Ni值降低,而Cu、Pb、Ag、Bi等元素的含量明显升高。结合矿区次英安斑岩的产状和含矿性特征表明,大宝山矿床块状、似层状和脉状硫化物矿体都是次英安斑岩深部岩浆房产出的含矿流体在不同赋矿环境中的产物。  相似文献   

11.
This article investigates the relationship between soil Cd, Cu, Pb and Zn contaminants and the location and activities of the Pb–Zn–Ag and Cu mines at Mount Isa, Queensland, Australia. Analysis of the data focuses primarily on soil Pb distributions and concentrations because of their potential impact on children’s health. The Xstrata Mount Isa Mines lease (XMIM) is Australia’s leading emitter of numerous contaminants to the environment, including Cu and Pb, and the mining-related activities have been linked causally to the findings of a 2008 study that showed 11.3% of local children (12–60 months) have blood Pb levels >10 μg/dL. Queensland government authorities and Xstrata Mount Isa Mines Pty Ltd maintain that contaminants within environmental systems around Mount Isa are largely the result of near-surface mineralization. The evidence for whether the contamination is derived from XMIM or other possible sources, such as the natural weathering of ore-rich bedrock, is investigated using data from surface and subsurface soil chemistry, atmospheric modelling of metal contaminants from mining and smelting operations and local geological and associated geochemical studies. Sixty surface soil samples collected from sites adjacent to houses, parks and schools throughout Mount Isa city were analyzed for their total extractable Cd, Cu, Pb and Zn concentrations in the <2 mm to >180 μm (coarser) and <180 μm (finer) grain size fractions. Concentrations in the finer size fraction reveal a range of values: Cd – 0.7–12.5 ppm; Cu – 31–12,100 ppm; Pb – 8–5770 ppm; Zn – 26–11,100 ppm, with several samples exceeding Australian residential health investigation guidelines. Spatial analysis shows that surface soil metal concentrations are significantly higher within 2 km of XMIM compared to more distant samples, and that more than 1000 property lots are at risk of having detrimentally high soil Pb levels. Determination of metal concentrations in 49 samples from eight soil pits shows that surface samples (0–2 cm) are enriched significantly relative to those at depth (10–20 cm), suggesting an atmospheric depositional origin. AUSPLUME air dispersal modelling of Pb originating from the Cu and Pb smelter stacks and mine site fugitive sources confirms that Pb is deposited across the urban area, during periods of the year (∼20%/a) when the wind blows from the direction of XMIM towards the urban area and disperses dusts from the uncovered spoil and road surfaces, as well as from stack emission sources. Although there are some spatially restricted outcrops of Pb close to the surface in parts of the urban area, the Cu-ore body is ∼244 m below the surface. However, enriched and significantly correlated surface soil concentrations of Cu and Pb (Pearson correlation 0.879, p = 0.000) in and around the urban area of Mount Isa can only be explained by atmospheric transport and deposition of metals from the adjoining mining and smelting operations. The results from this study provide unequivocal evidence that both historic and ongoing emissions from XMIM are contaminating the urban environment. Given the ongoing Pb poisoning issues in Mount Isa children, it is clear that remediation, reductions in mine emissions and more stringent regulatory actions are warranted.  相似文献   

12.
银多金属矿床中黝铜矿族银硫盐矿物的特征及其意义   总被引:10,自引:0,他引:10  
在国内外几个不同成因类型的银多金属矿床内产出的黝铜矿族银硫盐矿物中,除朗达矿床见有砷黝铜矿和含银砷黝铜矿外,较普遍共同发育有黝铜矿、含银黝铜矿和银黝铜矿、而后两者是最主要或主要的工业银矿物之一。按国际矿物学协会新矿物及矿物命名委员会的矿物命名原则,黝铜矿族矿物所含的Fe、Zn、Hg、Cd、Mn等不可作为矿物种的命名元素。蔡家营矿床的含银黝铜矿和银黝铜矿以Fe、Zn含量近似而有别于其余矿床的富Fe贫  相似文献   

13.
利用遥感技术对澳大利亚芒特艾萨地区铜多金属矿的遥感地质特征进行研究。根据ETM遥感影像数据,对芒特艾萨地区的遥感地质矿产解译,总结和分析该区区域地层、构造和岩浆岩的影像特征。在解剖芒特艾萨铜矿等3处典型铜多金属矿床的基础上,分析各控矿要素的遥感影像特征,初步建立了该类型铜多金属矿的遥感地质找矿模型。根据找矿模型圈定1处遥感地质特征相符的找矿远景区。通过遥感影像数据研究,划分和进一步缩少找矿靶区,对减少境外矿产投资的盲目性具有一定的指导意义。  相似文献   

14.
The genesis of sediment-hosted,exhalative zinc + lead deposits   总被引:2,自引:0,他引:2  
Large sediment-hosted lead+zinc deposits like Mount Isa, McArthur River, Navan, Rammelsberg and Sullivan form a distinctive group characterised by stratiform, syngenetic sulphide ores that formed in local basins on the sea floor as a result of protracted hydrothermal activity accompanying continental rifting. Generally there is a development of a sedimentary pre-ore phase mineralization often featuring manganese followed by zinc±lead, iron and chert. Lower main phase zinc+lead lenses are usually almost devoid of copper but Cu tenors increase toward the middle or top of the ore sequences. Hanging wall trace element haloes are common. These characteristics are accounted for by deriving the ore solutions from subsurface convective circulation of modified highly saline seawater. The circulation is initiated during rifting and driven by a high geothermal gradient. As a result of continued extensional strain and cooling of the rock column the brittle-to-ductile transition zone is depressed and the circulation penetrates to greater depth with time. Of the ore metals the downward-penetrating convection fluids first leach and transport zinc and lead, but with increasing temperature are later able to leach and transport some copper. Unless convective circulation ceases the metal sequence generally reverses as the cooling phase sets in. The minimum distance separating major coeval orebodies of this type is 18 km which is a function of the size of the convective systems.  相似文献   

15.
The syn-tectonic breccia-hosted Mount Isa Cu deposit in northwest Queensland is the largest sediment-hosted Cu deposit in Australia. Whole-rock samples of chalcopyrite-rich Cu ore form an isochron with a Re–Os age of 1,372 ± 41 Ma. This age is more than 100 Ma younger than the previously accepted age of Cu ore formation, an Ar–Ar mineral age for biotite separated from the host rocks within the alteration envelope to the Cu orebody. This discrepancy cannot be unequivocally resolved due to a lack of other absolute geochronological constraints for Cu mineralisation or the deformation event associated with Cu emplacement. The 1,372 ± 41 Ma date may reflect (a) the time of Cu deposition, (b) the time of a hydrothermal event that reset the Re–Os signature of the Cu ore or (c) mixing of the Re–Os isotope systematics between the host rocks and Cu-bearing fluids. However, a range of published Ar–Ar and Rb–Sr dates for potassic alteration associated with Cu mineralisation also records an event between 1,350 and 1,400 Ma and these are consistent with the 1,372 Ma Re–Os age. The 1.8 Ga Eastern Creek Volcanics are a series of tholeiitic basalts with a primary magmatic Cu enrichment which occur adjacent to the Mount Isa Cu deposit. The whole-rock Os isotopic signature of the Eastern Creek Volcanics ranges from mantle-like values for the upper Pickwick Member, to more radiogenic/crustal values for the lower Cromwell Member. The Re–Os isotope signature of the Cu ores overlaps with those calculated for the two volcanic members at 1,372 Ma; hence, the Os isotope data are supportive of the concept that the Os in the Cu ores was sourced from the Eastern Creek Volcanics. By inference, it is therefore postulated that the Eastern Creek Volcanics are the source of Cu in the Mount Isa deposit, as both Os and Cu are readily transported by oxidised hydrothermal fluids, such as those that are thought to have formed the Cu orebody. The Pickwick Member yields a Re–Os isochron age of 1,833 ± 51 Ma, which is within error of previously reported age constraints. The initial 187Os/188Os isotopic ratio of 0.114 ± 0.067 (γOs = −0.7) is slightly subchondritic, and together with other trace element geochemical constraints, is consistent with a subcontinental lithospheric mantle source. The Pickwick Member records a minimum age of ca. 1.95 Ga for melt depletion in the subcontinental lithospheric mantle beneath the Mount Isa Inlier prior to the extraction of the magmas which formed the Eastern Creek Volcanics. This corresponds with the end of subduction-related magmatism along the eastern margin of the Northern Australian Craton, which included the Mount Isa Inlier.  相似文献   

16.
Pyritic shale horizons of the Newland Formation (Belt Series, Mid-Proterozoic) show striking similarities to Proterozoic pyritic shales elsewhere that are host to major lead-zinc deposits, such as Mt. Isa and McArthur River. However, in contrast to these deposits the pyritic shales of the Newland Formation contain only minute quantities of lead and zinc. Elevated concentrations of lead and zinc are only found in pore spaces of intercalated sandstone beds. Petrographic and geochemical data indicate that pyritic shale deposition and elevated lead-zinc concentrations in sandstone beds are unrelated, that base metal mineralization is controlled by initial porosity, and that iron and base metals were derived from different sources.Petrographic studies show that base metal sulphides are diagenetic and resemble disseminated mineralization described from sandstone hosted lead-zinc and copper deposits in the Belt basin and elsewhere. The absence of orebodies of disseminated lead-zinc mineralization in sandstones of the Newland Formation may be due to a comparatively thin sedimentary sequence below the sandstone occurrences, as well as to unfavourable geometry and small volume of sandstone bodies.  相似文献   

17.

The Hilton deposit is a deformed and metamorphosed Proterozoic stratiform Pb‐Zn‐Ag‐Cu deposit hosted by dolomitic and carbonaceous sediments of the Urquhart Shale of the Mt Isa Group. Rocks in the Hilton area show a history of folding and faulting which spans the time range recognized elsewhere in the Western Succession of the Mt Isa Inlier, though the effects of relatively late and brittle deformation are more pronounced in the Hilton area. The Hilton area shows intense faulting relative to similar rocks to the south in the Mt Isa‐Hilton belt. Faulting in the Hilton area has generally resulted in east‐west shortening and extension in both north‐south and vertical directions. This relatively intense late strain is attributed to the geometry of the Paroo Fault Zone, a major north‐trending zone that bounds the Hilton area to the west, and the Sybella Batholith, which formed a relatively rigid indenter during late deformation in the Hilton area. The structural history of the Hilton area is broadly consistent with ongoing east‐west shortening during progressive uplift from mainly ductile to more brittle conditions. Based on these observations, thinning of the Mt Isa Group which was previously attributed to synsedimentary faulting, can now be shown to be related to heterogeneous strain during late faulting. Sulphide layers show a history of folding which is similar to that of the surrounding rocks. Pyrite which is paragenetically associated with mineralization is overprinted by a bedding‐parallel foliation which predates all other structures in the area. This suggests that stratiform sulphide mineralization in the Hilton area predates deformation. Deformation has affected the Hilton orebodies at all scales. Changes in thickness and ‘fault windows’ in the orebody interval occur on the scale of the entire deposit. Mesoscopic ore thickness changes are often clearly related to extensional and contractional structures within sulphide layers. These macroscopic and mesoscopic ore‐thickness variations are spatially associated with cross‐cutting brittle faults, suggesting that strain incompatibility between brittle host rocks and more ductile ore layers played a major role in the present geometry and thickness of sulphide ores at Hilton.  相似文献   

18.
Geochemical responses in weathered and oxidized surface metasedimentary rocks associated with stratiform lead-zinc mineralization at Stirling Hill (6 km west of Broken Hill) are compared with the geochemical responses in fresh drill core from an equivalent lithostratigraphic section with stratiform lead-zinc mineralization at the Pinnacles Mine (8 km south of Stirling Hill). Mineralization is interpreted as being volcanic exhalative and it lies within highly metamorphosed (sillimanite grade) rocks of the Willyama Supergroup.Surface rocks were classified into groups by discriminant analysis using drill core data from the Pinnacles Mine as the initial training set. The behaviour of elements in surface rocks varies with the rock group but Zn, Pb, Mn, Fe, and Co are leached from all surface rocks relative to fresh drill core.Nothwithstanding the leaching effects of weathering, common geochemical responses to mineralization have been identified in drill core and surface rocks. Coincident positive anomalies for Zn/Ba and Fe/(Na × Ba) ratios and negative anomalies for Na/(Mn × Ca) ratios uniquely define mineralization in both weathered surface rocks and in fresh drill core.The results demonstrate that the pattern of geochemical responses to Pinnacles-type stratiform volcanic-exhalative mineralization in surface rocks has survived the intensive weathering regime in the Broken Hill region.  相似文献   

19.
安徽铜陵冬瓜山铜、金矿床两阶段成矿模式   总被引:21,自引:0,他引:21  
冬瓜山铜金矿床包括层状硫化物矿体、矽卡岩型和斑岩型矿体。层状硫化物矿体具层状形态和层控特征,矿石具块状、层纹状和揉皱状构造。燕山期岩浆岩及其岩浆流体对层状矿体进行了叠加和改造,改变了其结构构造、矿物组合和矿石成分,并在其上叠加蚀变和矿化。层状矿体中的铜是由含铜流体交代块状硫化物矿石形成的。冬瓜山铜金矿床经历了两次成矿作用:第一成矿阶段.在石炭纪中期,海底喷流作用形成了块状硫化物矿床,矿石成分以硫、铁矿为主;第二成矿阶段。燕山期岩浆侵人,一方面岩浆热液与围岩相互作用发生矽卡岩化、硅化、钾长石化、石英绢云母化和青磐岩化,形成矽卡岩型和斑岩型矿体,另一方面岩浆流体对块状硫化物矿体进行叠加改造,致使块状硫化物矿体富集铜等成矿物质。  相似文献   

20.
The NW-dipping Fiery Creek Fault System, located in the northern Mount Isa terrane, comprises numerous sub-parallel faults that record multiple episodes of Palaeo- to Mesoproterozoic movement. Hanging wall wedge-shaped stratal geometries and marked stratal thickness variation across the fault system indicate that the earliest movement occurred during episodic intracontinental extension (Mount Isa Rift Event; ca. 1710–1655 Ma). Reactivation of the fault system during regional shortening and basin inversion associated with the Mesoproterozoic Isan Orogeny (ca. 1590–1500 Ma) resulted in complex three-dimensional hanging wall geometries and highly variable strain in the hanging wall strata along the fault system. This has resulted in the development of discrete hanging wall deformation compartments, that are characterised by different structural styles. High strain compartments are characterised by relatively intense folding and the development of break-back thrusts, whereas low strain compartments are only weakly folded. Variations in hanging wall strain are attributed to selective reactivation of normal fault segments, controlled by the pre-inversion fault dip and lithological contrasts across the faults. Variation of the pre-inversion fault dip is interpreted to have been caused by episodic tilt-block rotation during crustal extension. Moderately dipping faults active early in the Mount Isa Rift Event show the greatest degree of reactivation, whereas younger and steeper normal faults have behaved as buttresses during inversion with strain focussed in zones of upright folding in the hanging wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号