首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Deccan Trap region exhibits an erosional landscape over a relatively ancient and stable Deccan shield. The Quaternary history of the area has been reconstructed on the basis of evidence from alluvial deposits occurring along the major rivers. However, recent investigations have revealed that evidence for geo-environmental change during the Quaternary Period is also contained in the colluvial deposits that occur in the foothill zones. The colluvial deposits, ranging in thickness from 1 to 10 m, invariably occupy gently inclined pediment slopes. The sediments are presently deeply dissected by gullies, and the process of colluviation has almost ceased. These deposits are best preserved in the semi-arid parts of the region. Detailed textural, geochemical and stratigraphical studies at four different sites reveal similar input processes, the slight variations being attributed to local environmental factors. Scanning electron microscopy studies of some grains indicate marginal contribution of aeolian processes at the time of deposition. Mesolithic artefacts and a few U/Th dates indicate that the colluviation took place during the Late Quaternary. The properties of the deposits suggest relatively high energy conditions as well as a remarkable variability in the intensity of hillslope processes. These properties are indicative of semi-arid conditions during which the regolith was stripped from devegetated hillslopes and was deposited on the pediments. A variety of evidence indicates that the period of colluviation coincided with arid conditions during the Last Glacial Maximum. The geomorphological and archaeological evidence also indicates that incision by gully systems was initiated during the early Holocene humid phase. The environmental conditions deduced for the study area are similar to those reported for other parts of the intertropical zone. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
We have obtained formulas to calculate the field components of an eccentric dipole (ED) with an arbitrarily directed moment from specified coordinates of the dipole center and from its moment vector. With these formulas, the model dipole position was fitted to the observed geomagnetic field, and the approximation accuracy was estimated according to the standard deviation from IGRF along the X, Y, and Z components; the fitting procedure was checked in several tests.We computed the ED parameters (position and moment orientation) and harmonic coefficients of the ED field for 50 years using surface IGRF components, discovered some changes, and compared them with those according to the Schmidt eccentric dipole model. It was found that the nondipolar contributions to the geomagnetic field increase as the dipole field decays with time, and the dipole center drifts northand eastward away from the Earth's gravity center.The main contribution of the dipole part in the Gaussian spherical harmonic expansion of the geomagnetic field turned out to come from the terms with n of 1 to 5 rather than from two first terms, and the contribution of higher harmonics increases with time. Therefore, the Schmidt ED approximation based on the first eight Gauss coefficients (n  2) must have only relative significance indicating changes of the parameters. On the other hand, world magnetic anomalies (WMA) show up already in two first Gauss terms rather than since the third term as it has been commonly assumed.  相似文献   

3.
Magnetovariational studies were carried out along four different EW profiles in Saurashtra region in different phases, during January 2007–March 2012. Transient geomagnetic field variations (X, Y horizontal field and Z vertical field components) recorded along these profiles are analyzed to infer the electrical conductivity distribution of the region. The vertical field transfer functions which depict the characteristics of electrical conductivity distribution are presented in the form of induction arrows. From the spatial distribution of these arrows, it is inferred that the sediments filling the offshore basins have more conductivity than those basins in Saurashtra region. Z/H pseudo sections along the four profiles in conjunction with tectonics and other geophysical methods permit to infer that the conductivity anomaly in the eastern part of the profiles is associated with the crustal/lithosphere thinning. The possible cause for these anomalies may be explained in terms of partial melts associated with mafic intrusions, related to Deccan and pre-Deccan volcanism. High resistive block related to underplating mantle material has been reflected in 1D models of long period magnetotelluric data and its thickness reduces from west to east. Lithosphere–asthenosphere boundary varies from 80 to 100 km.  相似文献   

4.
Temporal multifractal pattern of seismicity in northwest Himalayan region   总被引:1,自引:0,他引:1  
The variation of temporal fractal dimension D2 (t) value may be well applied for understanding the future large earthquakes. In this present analysis the time series of inter-occurrence of earthquakes of consecutive hundred events window in Himalayan region is analyzed. We observed the variation in D2 (t) values in the range of 0.19 to 0.68 indicating the variation of clustering of events with respect to time. The multifractal nature of earthquakes is also investigated by plotting Dq(t) versus q. The result shows the temporal distribution of earthquakes have multifractal structure of definitive pattern rather than random pattern.  相似文献   

5.
The paper presents the first quantitative results of a laboratory study of the velocity field in a two-arm spiral-wave pattern generated in a steady-state fashion by a hydrodynamical instability in a differentially rotating, thin layer of liquid. The liquid layer has a free surface, and the rotational profile includes an interval where the velocity drops abruptly, as in the gaseous disks of spiral galaxies. The properties of anticyclonic vortices observed between the arms of this pattern at the corotation radius are considered.  相似文献   

6.
About the observed and future changes in temperature extremes over India   总被引:1,自引:0,他引:1  
An attempt is made in the present study to analyse observed and model simulated temperature extremes over Indian region. Daily maximum and minimum temperature data at 121 well-distributed stations for the period 1970–2003 have been used to study the observed changes in objectively defined values of temperature extremes. In addition, an assessment of future scenarios of temperature extremes associated with increase in the concentration of atmospheric greenhouse gases is done using simulations of a state-of-the-art regional climate modelling system known as PRECIS (Providing Regional Climate for Impact Studies) performed to generate the climate for the present (1961–1990) and future projections for the period 2071–2100. Observational analysis done with 121 stations suggests the widespread warming through increase in intensity and frequency of hot events and also with decrease in frequency of cold events. More than 75% stations show decreasing trend in number of cold events and about 70% stations show increasing trend in hot events. Percentage of stations towards the warming through intensity indices of highest maximum temperature, lowest minimum temperature is 78 and 71% stations, respectively. Remaining stations show opposite trends, however, most of them are statistically insignificant. Observational analysis for India as a whole also shows similar results. Composite anomalies for monthly temperature extremes over two equal parts of the data period show increase (decrease) in the frequency of hot (cold) events for all months. In general, PRECIS simulations under both A2 and B2 scenarios indicate increase (decrease) in hot (cold) extremes towards the end of twenty-first century. Both show similar patterns, but the B2 scenario shows slightly lower magnitudes of the projected changes. Temperatures are likely to increase in entire calendar year, but the changes in winter season are expected to be prominent. Diurnal temperature range is expected to decrease in winter (JF) and pre-monsoon (MAM) months.  相似文献   

7.
Fundamental frequency map of site amplification at different sites in Doon valley, Uttarakhand, India is prepared from microtremor (ground ambient noise) using Horizontal to Vertical Spectral Ratio (HVSR) technique. The fan deposited alluvium filled synclinal valley of Doon lies between Main Boundary Thrust (MFT) and Himalayan Frontal Thrust (HFT) in the Himalayan active seismic belt and experienced many earthquakes in the past. The HVSR at different sites in the Doon valley ranges between the predominant frequencies 0.13 and 12.77 Hz. The HVSR in lower frequencies indicates that the site has either thick sediment covers or less compact rocks with fractures. Based on information on fundamental frequency and soft soil thickness, site classification map is generated. Results indicate that degree of compactness of rock types and presences of sediments vary significantly, which may play a major role in seismic hazard. The use of microtremor, therefore, constitutes an effective and inexpensive approach to site response and soft soil thickness estimation for preliminary microzonation.  相似文献   

8.
祁连山区森林景观格局对水文生态效应的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
在地理信息系统ArcGIS环境下,结合1987-2001年的水文资料,用Spatial Analyst、Hydrologic Modeling等扩展模块,对祁连山中段北坡大野口河流域和海潮坝河流域的景观格局与水文特征进行比较分析,结果表明:大野口河流域的景观组分以低海拔的草地和乔木林占优势,草地所占面积最大,整个景观较为破碎;海潮坝河流域的景观组分以高海拔的裸地和灌丛占优势,裸地所占面积最大,景观破碎化程度相对较低。大野口河流域的蒸散发占降水量的61%,流域径流系数为0.39;而海潮坝河流域的蒸散发占降水量的41%,流域径流系数为0.59。研究表明,导致两流域生态水文效应相差较大的主要原因是两流域不同的景观格局。  相似文献   

9.
Analysis of the spatial variability of soil properties is important to explain the site-specific ecosystems. Spatial patterns of some soil properties such as soil texture, exchangeable sodium percentage (ESP), electrical conductivity (ECe), soil pH and cation exchange capacity (CEC) were analyzed in salt and sodic affected soils in the south of the Ardabil province, in the northwest of Iran, to identify their spatial distribution for performance of a site-specific management. Soil samples were collected from 0 to 30, 30 to 60, 60 to 90, 90 to 120 and 120 to 150 cm soil depths at sampling sites. Data were investigated both statistically and geostatistically on the basis of the semivariogram. The spatial distribution model and spatial dependence level varied in the study area. Among the considered parameters, maximum and minimum spatial variability were observed in EC and pH parameters, respectively. Soil properties showed moderate to strong spatial dependence, except for a few. ECe was strongly spatially dependent in the total soil depth and clay was strongly spatially dependent at the first depth. Sand and pH were moderately spatially dependent for three of the five depths. ESP was strongly spatially dependent and silt was moderate in the total soil depths, except at 90–120 cm depth. Furthermore, CEC had strong spatial dependence for three of the five depths. All geostatistical range values were >1,389 m in this study. It was concluded that the strong spatial dependency of soil properties would lead to extrinsic factors such as bedrock, agricultural pollution, drainage and ground water level.  相似文献   

10.
Mountain range specific analog weather forecast model is developed utilizing surface weather observations of reference stations in each mountain range in northwest Himalaya (NW-Himalaya). The model searches past similar cases from historical dataset of reference observatory in each mountain range based on current situation. The searched past similar cases of each mountain range are used to draw weather forecast for that mountain range in operational weather forecasting mode, three days in advance. The developed analog weather forecast model is tested with the independent dataset of more than 717 days (542 days for Pir Panjal range in HP) of the past 4 winters (2003–2004 to 2006–2007). Independent test results are reasonably good and suggest that there is some possibility of forecasting weather in operational weather forecasting mode employing analog method over different mountain ranges in NW-Himalaya. Significant difference in overall accuracy of the model is found for prediction of snow day and no-snow day over different mountain ranges, when weather is predicted under snow day and no-snow day weather forecast categories respectively. In the same mountain range, significant difference is also found in overall accuracy of the model for prediction of snow day and no-snow day for different areas. This can be attributed to their geographical position and topographical differences. The analog weather forecast model performs better than persistence and climatological forecast for day-1 predictions for all the mountain ranges except Karakoram range in NW-Himalaya. The developed analog weather forecast model may help as a guidance tool for forecasting weather in operational weather forecasting mode in different mountain ranges in NW-Himalaya.  相似文献   

11.
Ram S. Sharma 《Lithos》1981,14(2):165-172
Electron-microprobe analyses of coexisting phases from a scapolite-garnet-epidote-calcite-plagioclase-hornblende-pyroxene (sphere-hematite-magnetite) rock of the Aravalli Group (Early Precambrian) at Karera, district Bhilwara, Rajasthan, reveal that chlorine is an important constituent of both scapolite (Me71.3 and hornblende, making the latter a dashkesanite variety. The amphibole also contains an unusually high K2O (3.7 wt.%), and is a chlor-potassium hastingsite. The epidote contains 41% pistacite and shows complete substitution of Al by Fe3+ in the Al-site and to some extent also in AIO and/or Al(OH) sites. The garnet is also rich in ferric iron and has a mol. composition Pyr23Alm8.5Gro13And54.5 Sp1.0. The pyroxene is dominantly a hedenbergite. The phase relations and textural as well as geological criteria exclude metasomatic processes and favour equilibrium recrystallization of the scapolite-bearing assemblage; the chlorine presumably derived from an evaporite component of the Aravalli metasediments. The geothermometry based on the fractionation of Na and Ca between scapolite (EqAn 43.3) and plagioclase (An85?90 yields metamorphic temperatures of around 700°C for the scapolite-bearing rock which are in agreement with those obtained by other mineral equilibria in the associated pelitic assemblages.  相似文献   

12.
13.
塔河地区奥陶系中下统碳酸盐岩主要经历了加里东中期-海西期古岩溶作用,前人对海西期岩溶特征研究作了大量工作,并取得了一些共性认识,但加里东中期岩溶作用与古水系的发育特征研究较为薄弱。利用三维地震资料和相关技术,对塔河地区西北部奥陶系古水系进行识别和刻画,并结合区域地层沉积和构造演化等,尤其是不整合面上覆地层接触关系,发现奥陶系上统良里塔格组顶面和桑塔木组顶面分别存在相互独立的水文体系,实现了对加里东中期Ⅱ幕和Ⅲ幕岩溶古水系归属的厘定,首次提出了良里塔格组末期的加里东中期Ⅱ幕运动具有优越的岩溶发育条件,初步探索了加里东中期古岩溶发育模式,从而为深入研究塔河地区奥陶系加里东中期构造特征和古岩溶作用奠定了基础。   相似文献   

14.
Within the Dalradian Series of Donegal, the Creeslough, Maas and Fintown successions, which have hitherto been regarded as stratigraphically distinct, are correlated. A standard terminology for this sequence is proposed and a detailed correlation is made with the Ballachulish Succession, which thus forms all the country around the Donegal Granites, northwest of the faults and thrusts which separate it from the Islay Succession.  相似文献   

15.
In the Hazara arc region of northern Pakistan, some of the active basements structures buried below a thick, detached sedimentary layer are inferred from the distribution of lineaments and the drainage patterns, as viewed in Landsat satellite imagery and from river profiles.A prominent set of NW-trending lineaments seen on satellite imagery, coincides approximately with the southwest or updip side of the Indus—Kohistan seismic zone (IKSZ) —the most active basement structure of the region, even though this structure is buried beneath and decoupled from a 12 km thick sedimentary layer. The IKSZ has been interpreted as an extension of the Himalayan Basement Thrust, and is also associated with a prominent topographic “step”.Knickpoints on major rivers in the region lie on or north of the IKSZ. All Indus River tributaries, examined north of the IKSZ, show prominent knickpoints, while two tributaries draining south of the IKSZ have no knickpoints. These results suggest ongoing uplift above and north of the IKSZ, and are consistent with the tectonic model obtained from the seismic data.Another prominent lineament set is detected along the north—south section of the Indus River. This set is probably related to the Indus River horst—anticline and associated reentrant.One of the two highest lineament concentrations occurs at the intersection between the NW-trending IKSZ lineament and the N-trending Indus River lineament. The other is along the west bank of the Indus Valley, 25 km north of Tarbela Dam.A topographic ridge (Swabi—Nowshera ridge) appears to be forming along the west side of the Indus River, in the Peshawar Basin. The rising ridge is ponding the Kabul River upstream of Nowshera, where the drainage is braided.  相似文献   

16.
International Journal of Earth Sciences - The continental breakup history at the northwest continental margin of India remained conjectural due to lack of clearly discernable magnetic anomaly...  相似文献   

17.
The Leo Pargil dome, northwest India, is a 30 km‐wide, northeast‐trending structure that is cored by gneiss and mantled by amphibolite facies metamorphic rocks that are intruded by a leucogranite injection complex. Oppositely dipping, normal‐sense shear zones that accommodated orogen‐parallel extension within a convergent orogen bound the dome. The broadly distributed Leo Pargil shear zone defines the southwest flank of the dome and separates the dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and south. Thermobarometry and in‐situ U–Th–Pb monazite geochronology were conducted on metamorphic rocks from within the dome and in the hanging wall. These data were combined with U–Th–Pb monazite geochronology of leucogranites from the injection complex to evaluate the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts that record prograde Barrovian metamorphism during crustal thickening that reached ~530–630 °C and ~7–8 kbar, ending by c. 30 Ma. Cordierite and sillimanite overgrowths on Barrovian assemblages within the dome record dominantly top‐down‐to‐the‐west shearing during near‐isothermal decompression of the footwall rocks to ~4 kbar by 23 Ma during an exhumation rate of 1.3 mm year?1. Monazite growth accompanied Barrovian metamorphism and decompression. The leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. These data show that orogen‐parallel extension in this part of the Himalaya occurred earlier than previously documented (>16 Ma). Contemporaneous onset of near‐isothermal decompression, top‐down‐to‐the‐west shearing, and injection of the decompression‐driven leucogranite complex suggests that early crustal melting may have created a weakened crust that was proceeded by localization of strain and shear zone development. Exhumation along the shear zone accommodated decompression by 23 Ma in a kinematic setting that favoured orogen‐parallel extension.  相似文献   

18.
《Atmósfera》2014,27(1):77-89
Wind power density, vertical velocity profiles, and other wind characteristics were established using a 51 m meteorological mast located very close to the shoreline on the northwest of the Yucatan peninsula in the Gulf of Mexico. A comparative study of the wind power density was carried out using information obtained between September 2010 and September 2011. The wind speed probability density function was found to be bimodal due to sea-land breezes, a characteristic that becomes less evident as the vertical distance to the ground increases. The distinction between these two wind regimes was used to fit the Weibull-Weibull curve using a linear least-squares criterion in the parameters. In addition, numerical simulations from a mesoscale model are in close agreement with measurements above z = 50 m (z is the vertical distance to the ground). This result suggests that some mesoscale simulations may serve as a preliminary wind energy assessment tool in coastal zones with extended low-lying areas.  相似文献   

19.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   

20.
Though over four-fifths of Indian population is Hindu, there are sizeable numbers of other religious groups: Muslim, Christian, Sikh, Buddhist, Jain and other religion (mainly aboriginal animists). Hindus are spread out all over the country with declining or negligible concentration at the southern, northeastern and northwestern parts of the country. Sikhs are concentrated in Punjab; Muslims have majority in the northwestern Kashmir and Lakhadweep; Buddhists compose over 50% population in Western Kashmir, immediately south of it and Sikkim; Mixed religious areas are in the northeastern and southwestern tip of the country. By applying factor analysis technique it is possible to delineate religious regions of India with five major classes: Mainly Hindu, Muslim, Sikh, Buddhist and Mixed. There are several pockets where Hindus form the main religious group, but Muslims, Christians and others are secondary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号