首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

2.
Pre-monsoon rainfall around Kolkata (northeastern part of India) is mostly of convective origin as 80% of the seasonal rainfall is produced by Mesoscale Convective Systems (MCS). Accurate prediction of the intensity and structure of these convective cloud clusters becomes challenging, mostly because the convective clouds within these clusters are short lived and the inaccuracy in the models initial state to represent the mesoscale details of the true atmospheric state. Besides the role in observing the internal structure of the precipitating systems, Doppler Weather Radar (DWR) provides an important data source for mesoscale and microscale weather analysis and forecasting. An attempt has been made to initialize the storm-scale numerical model using retrieved wind fields from single Doppler radar. In the present study, Doppler wind velocities from the Kolkata Doppler weather radar are assimilated into a mesoscale model, MM5 model using the three-dimensional variational data assimilation (3DVAR) system for the prediction of intense convective events that occurred during 0600 UTC on 5 May and 0000 UTC on 7 May, 2005. In order to evaluate the impact of the DWR wind data in simulating these severe storms, three experiments were carried out. The results show that assimilation of Doppler radar wind data has a positive impact on the prediction of intensity, organization and propagation of rain bands associated with these mesoscale convective systems. The assimilation system has to be modified further to incorporate the radar reflectivity data so that simulation of the microphysical and thermodynamic structure of these convective storms can be improved.  相似文献   

3.
The structure and dynamics of severe convective storms and their mesoscale environments is described on the basis of current literature. Numerical modeling of regional and cloud-scale meteorology is reviewed with respect to its contribution to the understanding of convective storm evolution. Observation techniques are surveyed briefly. Critical questions, principally on the triggering of convective storms, are listed and a U.S. national program (Project SESAME) aimed at answering them is briefly described.  相似文献   

4.
Global warming is likely modifying the hydrological cycle of forested watersheds. This report set as objectives to: a) assess the hydrological variables interception loss, I, potential and actual evapo-transpiration, E, Et, runoff, Q, and soil moisture content, θ; b) evaluate whether these variables are presenting consistent trends or oscillations that can be associated to global warming or climate variability; and c) relate θ to the number of wildfires and the burned area in Durango, Mexico. A mass balance approach estimated daily variables of the water cycle using sub-models for I and Et to calculate Q and θ for a time series from 1945 to 2007. Regression and auto-regressive and moving averaging (ARIMA) techniques evaluated the statistical significance of trends. The cumulative standardized z value magnified and ARIMA models projected statistically similar monthly and annual time series data of all variables of the water cycle. Regression analysis and ARIMA models showed monthly and annual P, I, E, and Et, Q, and θ do not follow consistent up or downward linear tendencies over time with statistical significance; they rather follow oscillations that could be adequately predicted by ARIMA models (r2 ≥ 0.70). There was a consistent statistical association (p ≤ 0.05) of θ with the number of wildfires and the area burned regardless of the different spatial scales used in evaluating these variables. The analysis shows seasonal variability is increasing over time as magnifying pulses of dryness and wetness, which may be the response of the hydrological cycle to climate change. Further research must center on using longer time series data, testing seasonal variability with additional statistical analysis, and incorporating new variables in the analysis.  相似文献   

5.
Abstract

In the Southwestern intermountain and high plains areas, precipitation is seasonal, with the major part of the rainfall occurring in the summer. Most winter precipitation occurs as low-intensity rain or snow along slow-moving cold fronts. Most summer precipitation occurs as short-duration, high-intensity thunderstorms from purely convective buildup or from convective cells developing along a weak fast-moving cold front. Almost all runoff occurs from the summer convective storms.

Since runoff-producing precipitation is of primary interest at the Southwest Watershed Research Center, Agricultural Research Service, Tucson, Arizona, the convective storms have been most thoroughly analyzed. Duration, intensity, areal extent, movement, character, and return frequencies for varying volumes and intensities of these convective storms are analyzed from records from dense networks of recording rain gages in four study areas in Arizona and New Mexico. The primary study areas are the 58-square-mile Walnut Gulch Experimental Watershed at Tombstone, Arizona, and the 67-squaremile Alamogordo Creek Watershed near Santa Rosa, New Mexico. Three “record” storms of differing character occurring in 1960 and 1961 on Alamogordo Creek Watershed and one “record” storm in 1961 on the Wlanut Gulch Watershed are analyzed and compared in detail.  相似文献   

6.
Spatial correlation structure in small-scale rainfall is analyzed based on a dense cluster of raingauges in Central Oklahoma. This cluster, called the EVAC PicoNet, consists of 53 gauges installed in 25 measurement stations covering an area of about 3 km by 3 km. Two raingauges are placed in 24 stations and five in the central station. Three aspects of the estimated spatial correlation functions are discussed: dependence on time-scale ranging from 1 min to 24 h, inter-storm variability, and dependence on rainfall intensity. The results show a regular dependence of the correlogram parameters on the averaging time-scale, large differences of the correlograms in the individual storms, and the dominance of storms with high spatial variability on the average large sample characteristics. The authors also demonstrate and discuss the ambiguities in correlation estimates conditioned on rainfall intensities. The findings of this study have implications for raingauge network design, rainfall modeling, and conclusive evaluation of radar and satellite estimates of rainfall.  相似文献   

7.
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms?? development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.  相似文献   

8.
《Advances in water resources》2005,28(11):1230-1239
Taylor’s hypothesis (TH) for rainfall fields states that the spatial correlation of rainfall intensity at two points at the same instant of time can be equated with the temporal correlation at two instants of time at some fixed location. The validity of TH is tested in a set of 12 storms developed in Rondonia, southwestern Amazonia, Brazil, during the January–February 1999 Wet Season Atmospheric Meso-scale Campaign. The time Eulerian and Lagrangian Autocorrelation Functions (ACF) are estimated, as well as the time-averaged space ACF, using radar rainfall rates of storms spanning between 3.2 and 23 h, measured at 7–10-min time resolution, over a circle of 100 km radius, at 2 km spatial resolution. TH does not hold in 9 out of the 12 studied storms, due to their erratic trajectories and very low values of zonal wind velocity at 700 hPa, independently from underlying atmospheric stability conditions. TH was shown to hold for 3 storms, up to a cutoff time scale of 10–15 min, which is closely related to observed features of the life cycle of convective cells in the region. Such cutoff time scale in Amazonian storms is much shorter than the 40 min identified in mid-latitude convective storms, due to much higher values of CAPE and smaller values of storm speed in Amazonian storms as compared to mid-latitude ones, which in turn contribute to a faster destruction of the rainfall field isotropy. Storms satisfying TH undergo smooth linear trajectories over space, and exhibit the highest negative values of maximum, mean and minimum zonal wind velocity at 700 hPa, within narrow ranges of atmospheric stability conditions. Non-dimensional parameters involving CAPE (maximum, mean and minimum) and CINE (mean) are identified during the storms life cycle, for which TH holds: CAPE mean/CINE mean = [30–35], CAPE max/CINE mean = [32–40], and CAPE min/CINE mean = [22–28]. These findings are independent upon the timing of storms within the diurnal cycle. Also, the estimated Eulerian time ACF’s decay faster than the time-averaged space and the Lagrangian time ACF’s, irrespectively of TH validity. The Eulerian ACF’s exhibit shorter e-folding times, reflecting smaller correlations over short time scales, but also shorter scale of fluctuation, reflecting less persistence in time than over space. No significant associations (linear, exponential or power law) were found between estimated e-folding times and scale of fluctuation, with all estimates of CAPE and CINE. Secondary correlation maxima appear between 50 and 70 min in the Lagrangian time ACF’s for storms satisfying TH. No differences were found in the behavior of each of the three ACF’s for storms developed during either the Easterly or Westerly zonal wind regimes which characterize the development of meso-scale convective systems over the region. These results have important implications for modelling and downscaling rainfall fields over tropical land areas.  相似文献   

9.
Migration velocities of convective storms are summarized for six situations, with different environmental wind fields. Small-and medium-sized storms generally moved to left of the direction of, and at speeds somewhat less than, the vector mean wind in the troposphere. Large-diameter (ca. 20–30 km) storms generally deviated to the right, in proportion to their sizes and to the veering of wind with height. This behavior, and the tendency for large storms to move appreciably slower than the mean wind, are even more pronounced when giant clusters of thunderstorms are considered. An example is analyzed in which a multicellular storm, 80 km wide, moved 55° to right of the mean wind and with half its speed. This behavior results from a characteristic pattern of propagation, in which new cells tend to form on the general upwind side of the cluster, with the larger and more intense cells developing on its right flank. The individual cells move through the cluster, dissipating on approach to its advancing and left flanks. Preferential formation of cells toward the rear side of the cluster is shown to be compatible with the probable origin and trajectories (relative to the moving storm) of air ascending from the lower part of the subcloud layer. The sometimes-observed rapid movement of large multicellular storms to left of the mean wind is partly accounted for by an opposite (left forward flank) pattern of propagation.  相似文献   

10.
Influence of the rainfall regime on erosion and transfer of suspended sediment in a 905‐km² mountainous catchment of the southern French Alps was investigated by combining sediment monitoring, rainfall data, and sediment fingerprinting (based on geochemistry and radionuclide concentrations). Suspended sediment yields were monitored between October 2007 and December 2009 in four subcatchments (22–713 km²). Automatic sediment sampling was triggered during floods to trace the sediment origin in the catchment. Sediment exports at the river catchment outlet (330 ± 100 t km‐2 yr‐1) were mainly driven (80%) by widespread rainfall events (long duration, low intensities). In contrast, heavy, local and short duration storms, generated high peak discharges and suspended sediment concentrations in small upstream torrents. However, these upstream floods had generally not the capacity to transfer the sediment down to the catchment outlet and the bulk of this fine sediment deposited along downstream sections of the river. This study also confirmed the important contribution of black marls (up to 70%) to sediment transported in rivers, although this substrate only occupies c. 10% of the total catchment surface. Sediment exports generated by local convective storms varied significantly at both intra‐ and inter‐flood scales, because of spatial heterogeneity of rainfall. However, black marls/marly limestones contribution remained systematically high. In contrast, widespread flood events that generate the bulk of annual sediment supply at the outlet were characterized by a more stable lithologic composition and by a larger contribution of limestones/marls, Quaternary deposits and conglomerates, which corroborates the results of a previous sediment fingerprinting study conducted on riverbed sediment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Satellite observations of cloud top temperature and lightning flash distribution are used to examine the relationship between deep convection and lightning activity over the tropical regions of the northern and southern hemispheres. In agreement with previous work, the analysis of the results shows that, in the summer of both hemispheres, the lightning activity in continental deep convective storms is more intense than that in marine deep convective storms by a factor of between 7 and 10. Furthermore, it was observed that on average the daily lightning rate per 1°×1° grid cell for the southern hemisphere (SH) is about 20% greater than that of the northern hemisphere (NH), which can be attributed to a larger fractional cover by deep convective clouds in the SH. By using a set of independent indicators, it is shown that deep convection and lightning activity over land are well correlated (with correlation coefficients of 0.8 and 0.6 for NH and SH, respectively). This suggests the capacity for observations to act as a possible method of monitoring continental deep convective clouds, which play a key role in regulating the Earth’s climate. Since lightning can be monitored easily from ground networks and satellites, it could be a useful tool for validating the performance of model convective schemes and for monitoring changes in climate parameters.  相似文献   

13.
The fact that magnetic clouds are one of the main sources causing geomagnetic storms is a well-established fact. One of the issues is to establish those features of magnetic clouds determinant in the intensity of the Dst corresponding to geomagnetic storms. We examine measurements of geoeffective magnetic clouds during the period 1995–2006 providing geomagnetic storms with Dst indexes lower than ?100 nT. These involve 46 geomagnetic storm events. After establishing the different characteristics of the magnetic clouds (plasma velocity, maximum magnetic intensity, etc.) we show some results about the correlations found among them and the storms intensity, finding that maximum magnetic field magnitude is a determinant factor to establish the importance of magnetic clouds in generating geomagnetic storms, having a correlation as good as the electric convective field.  相似文献   

14.
The ordinary kriging method, a geostatistical interpolation technique, was applied for developing contour maps of design storm depth in northern Taiwan using intensity–duration–frequency (IDF) data. Results of variogram modelling on design storm depths indicate that the design storms can be categorized into two distinct storm types: (i) storms of short duration and high spatial variation and (ii) storms of long duration and less spatial variation. For storms of the first category, the influence range of rainfall depth decreases when the recurrence interval increases, owing to the increasing degree of their spatial independence. However, for storms of the second category, the influence range of rainfall depth does not change significantly and has an average of approximately 72 km. For very extreme events, such as events of short duration and long recurrence interval, we do not recommend usage of the established design storm contours, because most of the interstation distances exceed the influence ranges. Our study concludes that the influence range of the design storm depth is dependent on the design duration and recurrence interval and is a key factor in developing design storm contours. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A one month field campaign featuring two spring–neap tide cycles and three strong storms has been performed in a mobile dune area located in the central part of the Dover Strait. These dunes are known to move in a complex manner as their migration direction varies in space and time (Le Bot et al., 2000, Le Bot, 2001, Le Bot and Trentesaux, 2004). In order to gain some insights into the dune motion processes we present an analysis of the spatio-temporal variability of currents in the area emphasizing the relative influence of tides and storms. A total of eight different hydro-meteorological regimes have been distinguished during the experiment duration. The analysis of the currents measurements at five locations in the area shows that the eight hydro-meteorological regimes induce very different current responses at the bottom. The residual tidal currents exhibit a significant spatial variability both in direction and in intensity. A numerical model of tidal currents over the Dover Strait confirms the strong spatio-temporal variability of the residual tidal currents featuring three singular points. Amongst them, a saddle point is located just south of the I-dune at the convergence of opposite direction residual tidal currents. The wind-induced currents are almost uniform in space, their intensity and direction however strongly depends on the wind regime and thus on time. The mean total current feature a spatial pattern which can be tidal of wind-induced currents dominated, or either in balance, depending on the regime considered. At the PERMOD campaign time scale, the total current is dominated by the residual tidal current. These results proved to give valuable insights to explain the complex dynamics of dune motion observed in this area by Le Bot et al., 2000, Le Bot, 2001, Le Bot and Trentesaux, 2004 at short and long time scales.  相似文献   

17.
Atmospheric waves influence the dynamics and energetic budget of the upper atmosphere. Using the continuous HF Doppler sounder, we study the wave activity in the ionosphere during tropospheric convective storms in western and central part of the Czech Republic. The study is focused on acoustic-gravity waves in the period range 2–30 minutes. We discuss possible methods of distinguishing the waves emitted by meteorological sources from waves of different origin, particularly waves of geomagnetic origin. In two cases out of twenty-five analysed, we found waves in the infrasonic period range which might be generated by exceptionally intense meteorological activity in the troposphere. The results differ considerably from those previously obtained in North America. In the central part of the United States, infrasonic waves were frequently observed during convective storms. As a possible reason, we discuss different intensity and dynamics of weather systems in both regions.  相似文献   

18.
An attempt to diagnose the dominant forcings which drive the large-scale vertical velocities over the monsoon region has been made by computing the forcings like diabatic heating fields,etc. and the large-scale vertical velocities driven by these forcings for the contrasting periods of active and break monsoon situations; in order to understand the rainfall variability associated with them. Computation of diabatic heating fields show us that among different components of diabatic heating it is the convective heating that dominates at mid-tropospheric levels during an active monsoon period; whereas it is the sensible heating at the surface that is important during a break period. From vertical velocity calculations we infer that the prime differences in the large-scale vertical velocities seen throughout the depth of the atmosphere are due to the differences in the orders of convective heating; the maximum rate of latent heating being more than 10 degrees Kelvin per day during an active monsoon period; whereas during a break monsoon period it is of the order of 2 degrees Kelvin per day at mid-tropospheric levels. At low levels of the atmosphere, computations show that there is large-scale ascent occurring over a large spatial region, driven only by the dynamic forcing associated with vorticity and temperature advection during an active monsoon period. However, during a break monsoon period such large-scale spatial organization in rising motion is not seen. It is speculated that these differences in the low-level large-scale ascent might be causing differences in convective heating because the weaker the low level ascent, the lesser the convective instability which produces deep cumulus clouds and hence lesser the associated latent heat release. The forcings due to other components of diabatic heating, namely, the sensible heating and long wave radiative cooling do not influence the large-scale vertical velocities significantly.  相似文献   

19.
Extreme rainfalls in South Korea result mainly from convective storms and typhoon storms during the summer. A proper way for dealing with the extreme rainfalls in hydrologic design is to consider the statistical characteristics of the annual maximum rainfall from two different storms when determining design rainfalls. Therefore, this study introduced a mixed generalized extreme value (GEV) distribution to estimate the rainfall quantile for 57 gauge stations across South Korea and compared the rainfall quantiles with those from conventional rainfall frequency analysis using a single GEV distribution. Overall, these results show that the mixed GEV distribution allows probability behavior to be taken into account during rainfall frequency analysis through the process of parameter estimation. The resulting rainfall quantile estimates were found to be significantly smaller than those determined using a single GEV distribution. The difference of rainfall quantiles was found to be closely correlated with the occurrence probability of typhoon and the distribution parameters.  相似文献   

20.
Methods for estimating the magnitude of extreme floods are reviewed. A method which combines a probabilistic storm transposition technique with a physically-based distributed rainfallrunoff model is described. Synthetic storms with detailed spatial and temporal distributions are generated and applied to the calibrated model of the Brue river basin, U.K. (area 135 km2). The variability of catchment response due to storm characteristics (storm area, storm duration, storm movement, storm shape and within storm variation) and initial catchment wetness conditions is investigated. A probabilistic approach to estimating the return periods of extreme catchment responses is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号