首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of minerals on the lunar surface is information which could contribute to studying lunar origin and evolution. In this paper, the distribution of clinopyroxene, orthopyroxene, olivine, ilmenite, and plagioclase on the lunar surface has been mapped based on Hapke radiative transfer model and linear unmixing of spectra with Clementine UVVIS/NIR data. The results have been validated on the basis of minerals modal abundance data of the Apollo samples, and problems in the minerals abundance mapping have been analyzed. The validation based on analysis data of Apollo samples indicates that plagioclase mapped in this paper represents the total abundance of plagioclase and agglutinitic glass. The minerals mapping results show that the lunar surface is mainly composed of pyroxene, plagioclase, agglutinitic glass, and ilmenite. Basalt in the lunar mare is mainly composed of clinopyroxene and ilmenite, and lunar highland is mainly composed of plagioclase and agglutinitic glass. Orthopyroxene is mainly distributed on the north of Mare Imbrium, on the south of Maria and Aitken Basin. According to our results, there is probably no large area of olivine distribution on the lunar surface which is different from earlier published results. Therefore, emphasis should be put on the olivine distribution in the minerals mapping using hyperspectral data such as M3 of Chandrayaan-1 and IIM of ChangE-1.  相似文献   

2.
The Interference Imaging Spectrometer (IIM) onboard the first lunar satellite of China, Chang’E-1, has acquired 84% of the area between south and north latitude 70°. To contribute to its usability, this paper presents our preliminary experience in the use of IIM data. Firstly, we provide one practicable method for the on-orbit correction of the inhomogeneity of sensor response. Secondly, aiming at the problem that the spectral range of IIM does not cover the absorption peak of the mafic mineral completely, we explore a method to approximate the absorption band center for IIM data. A strong correlation between the absorption band center and the wavelength at which the first derivative equals to 0 (i.e., stagnation point) was revealed. Based on the corrected data and the correlation, the absorption band center of several large craters was mapped. The distribution of rocks and minerals shown in the map of absorption band center for Aristarchus and Copernicus is in agreement with previous studies but with much finer structure. Horizontal and vertical lithologic diversity was detected in Zucchius crater. This paper demonstrates the potential of IIM data for the identification of lunar rocks due to its high spatial and spectral resolution. In a future study we will produce a global map of the absorption band center with greater accuracy and it is expected that this global map will provide complementary information for other hyperspectral data such as SP on KAGUYA or M3 on Chandrayaan-1.  相似文献   

3.
Nanophase iron (np-Fe0) particles produced by space weathering have been widely observed in lunar soil. Current research suggests that np-Fe0 could have important effects on the chemical, optical and magnetic properties of the lunar soil. To investigate the relationship between np-Fe0 and these properties of lunar soil, simulation of the production process of np-Fe0 by space weathering is necessary because of the scarcity of lunar samples for research purposes. New methods using microwave heating and magnetron sputtering techniques to simulate np-Fe0 production both in the glass phase and on the grain surfaces, respectively, are investigated in this study. Both the formation and occurrence of np-Fe0 are taken into account in the experiment. The X-ray Diffraction (XRD) spectra show that metallic iron has formed in the glass phase produced by microwave heating of ilmenite. Using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the size of np-Fe0 particles produced in a microwave heating experiment, which is held for 8 min at 1300 °C, is determined to be about 100–500 nm. Compared to the glass of lunar sample 10084, the major composition of the glass matrix is formed by microwave heating compares favorably. In magnetron sputtering experiment the size of np-Fe0 particles is about 20–30 nm, and appears on the grain surfaces. The characteristics of np-Fe0 produced in the simulations are consistent with those of lunar samples documented in the literature.  相似文献   

4.
We performed ion irradiation of mineral samples with 50 keV He+, aimed to investigate ion irradiation effects on diagnostic spectral features. Reflectance spectra of samples in 0.375–2.5 μm are measured before and after ion irradiation. Silicates, including Luobusha olivine, plagioclase and basaltic glass, have shown reddening and darkening of reflectance spectra at the VIS–NIR range. Olivine is more sensitive to ion irradiation than plagioclase and basaltic glass. Irradiated Panzhihua ilmenite exhibits higher reflectance and stronger absorption features, which is totally different from lunar soil and analog silicate materials in other experiments. Using continuum removal and MGM fit, we extracted and compared absorption features of olivine spectra before and after irradiation. Ion irradiation can induce band strength decrease of olivine but negligible band centers shift. We estimate band centers shift caused by ion irradiation are quite limited, even less than variations due to chemical composition in silicates. It provides one possible explanation for no systematic shift in band positions in lunar soil. Irradiated Luobusha olivine spectrum matches spectra of olivine-dominated asteroids. Our results suggest space weathering should be new clues to explain the subtle difference between A-type asteroid spectra and laboratory spectra of olivine.  相似文献   

5.
The 1.02 μm wavelength thermal emission of the nightside of Venus is strongly anti-correlated to the elevation of the surface. The VIRTIS instrument on Venus Express has mapped this emission and therefore gives evidence for the orientation of Venus between 2006 and 2008. The Magellan mission provided a global altimetry data set recorded between 1990 and 1992. Comparison of these two data sets reveals a deviation in longitude indicating that the rotation of the planet is not fully described by the orientation model recommended by the IAU. This deviation is sufficiently large to affect estimates of surface emissivity from infrared imaging. A revised period of rotation of Venus of 243.023 ± 0.002 d aligns the two data sets. This period of rotation agrees with pre-Magellan estimates but is significantly different from the commonly accepted value of 243.0185 ± 0.0001 d estimated from Magellan radar images. It is possible that this discrepancy stems from a length of day variation with the value of 243.023 ± 0.002 d representing the average of the rotation period over 16 years.  相似文献   

6.
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ~12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15° × 15 ° region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3° east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.  相似文献   

7.
Reliable measurements of the Moon's global heat flow would serve as an important diagnostic test for models of lunar thermal evolution and would also help to constrain the Moon's bulk abundance of radioactive elements and its differentiation history. The two existing measurements of lunar heat flow are unlikely to be representative of the global heat flow. For these reasons, obtaining additional heat flow measurements has been recognized as a high priority lunar science objective. In making such measurements, it is essential that the design and deployment of the heat flow probe and of the parent spacecraft do not inadvertently modify the near-surface thermal structure of the lunar regolith and thus perturb the measured heat flow. One type of spacecraft-related perturbation is the shadow cast by the spacecraft and by thermal blankets on some instruments. The thermal effects of these shadows propagate by conduction both downward and outward from the spacecraft into the lunar regolith. Shadows cast by the spacecraft superstructure move over the surface with time and only perturb the regolith temperature in the upper 0.8 m. Permanent shadows, such as from thermal blankets covering a seismometer or other instruments, can modify the temperature to greater depth. Finite element simulations using measured values of the thermal diffusivity of lunar regolith show that the limiting factor for temperature perturbations is the need to measure the annual thermal wave for 2 or more years to measure the thermal diffusivity. The error induced by permanent spacecraft thermal shadows can be kept below 8% of the annual wave amplitude at 1 m depth if the heat flow probe is deployed at least 2.5 m away from any permanent spacecraft shadow. Deploying the heat flow probe 2 m from permanent shadows permits measuring the annual thermal wave for only one year and should be considered the science floor for a heat flow experiment on the Moon. One way to meet this separation requirement would be to deploy the heat flow and seismology experiments on opposite sides of the spacecraft. This result should be incorporated in the design of future lunar geophysics spacecraft experiments. Differences in the thermal environments of the Moon and Mars result in less restrictive separation requirements for heat flow experiments on Mars.  相似文献   

8.
To ascertain the importance of sputtering by solar wind ions on the formation of a sodium exosphere around Mercury and the Moon, we have irradiated with 4 keV He ions, the Na bearing tectosilicates: albite, labradorite, and anorthoclase, as well as adsorbed Na layers deposited on albite and on olivine (a neosilicate that does not contain Na). Sodium at the surface and near surface (<40 Å) was quantified with X-ray photoelectron spectroscopy before and after each irradiation to determine the depletion cross section. We measured a cross section for sputtering of Na adsorbed on mineral surfaces, σs  1 × 10?15 cm2 atom?1. In addition, mass spectrometric analyses of the sputtered flux show that a large fraction of the Na is sputtered as ions rather than as neutral atoms. These results have strong implications for modeling the sodium population within the mercurian and the lunar exospheres.  相似文献   

9.
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160–163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259–294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9–L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1–5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.  相似文献   

10.
MicrOmega is an ultra miniaturized spectral microscope for in situ analysis of samples. It is composed of 2 microscopes; one with a spatial sampling less or equal to 4 μm, working in 4 colors in the visible range: MicrOmega/VIS, and a NIR hyperspectral microscope working in the spectral range 0.9–4 μm with a spatial sampling of 20 μm per pixel: MicrOmega/IR (described in this paper). MicrOmega/IR illuminates and images samples a few mm in size and acquires the NIR spectrum of each resolved pixel in up to 320 contiguous spectral channels. The goal of this instrument is to analyze in situ the composition of collected samples at almost their grain size scale, in a non-destructive way. With the chosen spectral range and resolution, a wide variety of constituents can be identified: minerals, such as pyroxene and olivine, ferric oxides, hydrated phyllosilicates, sulfates and carbonates and ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body (planet, satellite and small body). In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for possible bio-relics.  相似文献   

11.
Chemical analyses of soil samples performed at different landing sites on Mars suggest the presence of sulfate minerals. These minerals are also thought to be present in the globally mixed Martian bright soils covering large areas of the planet. However, remote soil spectra have so far provided only tentative identification of sulfates regarding mineral types and abundances. This paper concentrates on the detectability of four Ca- and Mg-sulfates (anhydrite, gypsum, kieserite, hexahydrite) in the 4–5 μm range of Martian remote soil spectra. This spectral range is important for sulfate detection as most fine-grained sulfates exhibit significant absorption bands between 4 and 5 μm, independent of the texture of the host soils (e.g., loose powdered or cemented soils). Furthermore, this is the spectral range for which the Planetary Fourier Spectrometer (PFS) and Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) instruments onboard ESA/Mars Express mission provide high spectral and spatial resolution data. Laboratory near- and mid-IR reflectance spectra of the pure sulfates and their mixtures with a terrestrial Martian soil analog were acquired. The results show that even the smallest amount of admixed sulfate (∼5 wt%) generates significant absorption features in the portion of the 4–5 μm range not covered by the saturated Martian atmospheric CO2 absorption band between 4.2 and 4.4 μm. Model calculations of the influence of emitted surface radiation on the detectability of sulfate features show that the depth of the features decreases strongly with increasing surface temperature of an observed area resulting in the fact that all sulfates are spectrally hidden at surface temperatures around 270 K even at ∼14 or ∼25 wt% sulfate content in the soils. Sulfates become increasingly detectable depending on the sulfate content if the surface temperature is below 260 K. The outcome of this work helps to constrain the conditions needed for remote detection of sulfates within Martian bright soils in the 4–5 μm range.  相似文献   

12.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

13.
Abstract— Plans are underway for spacecraft missions to the planet Mercury beginning in the latter part of this decade (NASA's MESSENGER (MErcury, Surface, Space ENvironment, GEochemistry, Ranging) and ESA's BepiColombo). Mercury is an airless body whose surface is apparently very low in ferrous iron. Much of the mercurian surface material is expected to be optically mature, a state produced by the “space weathering” process from direct exposure to the space environment. If appropriate analog terrains can be identified on the Moon, then study of their reflectance spectra and composition will improve our understanding of space weathering of low‐Fe surfaces and aid in the interpretation of data returned from Mercury by the spacecraft. We have conducted a search for areas of the lunar surface that are optically mature and have very low ferrous iron content using Clementine ultraviolet‐visible (UV‐vis) image products. Several regions with these properties have been identified on the farside. These areas, representing mature pure anorthosites (>90% plagioclase feldspar), are of interest because only relatively immature pure anorthosites have previously been studied with Earth‐based spectrometry. A comparison of Mercury with the lunar analogs reveals similarities in spectral characteristics, and there are hints that the mercurian surface may be even lower in FeO content than the lunar pure anorthosites. We also investigate the potential for use of spectral features other than the commonly studied “1 μm” mafic mineral absorption band as tools for compositional assessment when spacecraft spectral measurements of Mercury become available. Most low‐Fe minerals plausibly present on Mercury lack absorption bands, but plagioclase possesses an iron impurity absorption at 1.25 μm. Detection of this diagnostic band may be possible in fresh crater deposits.  相似文献   

14.
Oceanus Procellarum, the largest lunar mare, is distributed with a large area of the late-stage (Eratosthenian) basalts. Research on the thickness, volume, and eruption flux of the late-stage basalts is essential for understanding the late thermal evolution of Oceanus Procellarum, even the Moon. The Eratosthenian basalts are rich in olivine and ilmenite, while the underlying Imbrian basalts are rich in pyroxene. Their significant spectral differences are easy to be distinguished using the hyperspectral data. We determine whether a crater has penetrated the overlying basalt layer by the data of Moon Mineralogy Mapper (M3), and estimate the thickness of Eratosthenian basalts in the Oceanus Procellarum region by using a crater excavation technique. A high-resolution thickness distribution map of the last-stage basalts within the Oceanus Procellarum has been acquired. The results show that the averaged thickness of Eratosthenian basalts in the Oceanus Procellarum region varies from (24 ± 2) m to (88 ± 2) m. Among them, the thickness of Eratosthenian basalts in the western Aristarchus is the greatest (>60 m), whereas the southernmost area of the study has a minimum thickness of about 28–31 m. The basalt thickness at the Chang’e-5 potential landing site Mons Rümker is about 31–38 m. The thickness of Eratosthenian basalts in the east of Marius is about 35–45 m, which is much smaller than the value of 100  300 m estimated by Weider et al. The total volume of Eratosthenian basalts is estimated to be ~1.39 × 104 km3, which is only about 1.6% of total basalts in Oceanus Procellarum. This indicates that the magmatism in the Eratosthenian period has been greatly weakened compared to the Imbrian period.  相似文献   

15.
The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites–smectites and chlorite–vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100–300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian unaltered volcanic plains. These plains may correspond to alluvial deposition of eroded material. The highlands of Tyrrhena Terra are therefore particularly well suited for investigating the diversity of hydrated minerals in ancient martian terrains.  相似文献   

16.
The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions.The highland–lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally >3km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga).All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or older. The formation ages of volcanic flanks at the HLB (e.g., Alba Mons (3.6–3.4 Ga) and the last fan at Apollinaris Mons, 3.71 Ga) may give additional temporal constraint for the possible existence of any kind of Martian ocean before about 3.7 Ga. It seems to reflect the termination of a large-scale, precipitation-based hydrological cycle and major geologic processes related to such cycling.  相似文献   

17.
It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses, sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 micrometers size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO approximately or = 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L.A. Taylor and D.S. McKay (1992, Lunar Planet Sci. Conf. 23rd, pp. 1411-1412 [Abstract]).  相似文献   

18.
《Planetary and Space Science》2006,54(13-14):1298-1314
The planetary fourier spectrometer (PFS) for the Venus Express mission is an infrared spectrometer optimized for atmospheric studies. This instrument has a short wavelength (SW) channel that covers the spectral range from 1700 to 11400 cm−1 (0.9–5.5 μm) and a long wavelength (LW) channel that covers 250–1700 cm−1 (5.5–45 μm). Both channels have a uniform spectral resolution of 1.3 cm−1. The instrument field of view FOV is about 1.6 ° (FWHM) for the short wavelength channel and 2.8 ° for the LW channel which corresponds to a spatial resolution of 7 and 12 km when Venus is observed from an altitude of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmospheric properties but also surface properties (temperature) and the surface-atmosphere interaction (volcanic activity).PFS works primarily around the pericentre of the orbit, only occasionally observing Venus from larger distances. Each measurements takes 4.5 s, with a repetition time of 11.5 s. By working roughly 1.5 h around pericentre, a total of 460 measurements per orbit will be acquired plus 60 for calibrations. PFS is able to take measurements at all local times, enabling the retrieval of atmospheric vertical temperature profiles on both the day and the night side.The PFS measures a host of atmospheric and surface phenomena on Venus. These include the:(1) thermal surface flux at several wavelengths near 1 μm, with concurrent constraints on surface temperature and emissivity (indicative of composition); (2) the abundances of several highly-diagnostic trace molecular species; (3) atmospheric temperatures from 55 to 100 km altitude; (4) cloud opacities and cloud-tracked winds in the lower-level cloud layers near 50-km altitudes; (5) cloud top pressures of the uppermost haze/cloud region near 70–80 km altitude; and (6) oxygen airglow near the 100 km level. All of these will be observed repeatedly during the 500-day nominal mission of Venus Express to yield an increased understanding of meteorological, dynamical, photochemical, and thermo-chemical processes in the Venus atmosphere. Additionally, PFS will search for and characterize current volcanic activity through spatial and temporal anomalies in both the surface thermal flux and the abundances of volcanic trace species in the lower atmosphere.Measurement of the 15 μm CO2 band is very important. Its profile gives, by means of a complex temperature profile retrieval technique, the vertical pressure-temperature relation, basis of the global atmospheric study.PFS is made of four modules called O, E, P and S being, respectively, the interferometer and proximity electronics, the digital control unit, the power supply and the pointing device.  相似文献   

19.
《Planetary and Space Science》2007,55(12):1701-1711
The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.  相似文献   

20.
Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ~7 mbar and mean global temperature of ~220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the 40Ar/36Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [~4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ~1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO2 are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO2 and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号