首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From a comparison between the different observations of Martian methane existing today, including the new TES methane maps (Fonti and Marzo, 2010), we show that all sets of data are globally consistent with each other, and that a well definite seasonal cycle of methane has been at work for at least 10 yr. With a simple model of the balance between the loss fluxes of H and O, using up-to-date values of the escape fluxes, we show that the long-standing enigma of the imbalance between H and O escape fluxes may be solved by assuming that the missing sink of oxygen is the oxidation of methane. If no H2 is released together with CH4, a good agreement is found between the present CH4 flux and the value imposed by the balance between H and O escape fluxes, an average over the last ≈103 yr. If H2 is released together with CH4, as expected if CH4 originates in serpentinization, the average level of CH4 during the last 103 yr should have been at least ten times lower than the present one. The lack of present H2 release could suggest a long-term storage of methane in the subsurface under the form of clathrates, whereas H2 has been lost to the atmosphere shortly after being produced. We suggest that the thin layer of CO2 ice covering the permanent southern polar cap could result from the release of methane since the end of the last obliquity transition (time scale: 1 Myr), at an average rate of 0.1 Mt yr?1, consistent with the values derived from: (i) the present observations of methane (time scale: 10 yr), (ii) the estimate from the observed imbalance between the H and O escape fluxes (time scale: 1 kyr). If so, the present release of methane from subsurface clathrates would have acted at a similar rate since at least 3 Myr.  相似文献   

2.
Rapid temporal variability of SO2 and SO in the Venus 85–100 km mesosphere (Sandor, B.J., Clancy, R.T., Moriarty-Schieven G.H. [2007]. Bull. Am. Astron. Soc. 39, 503; Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60) requires in situ sources and sinks for these molecules. While many loss mechanisms are recognized, no process for in situ production is known. Observational investigations to find, or constrain other potential sulfur reservoirs offer one method toward understanding the applicable photochemistry. Here, we report upper limits for gas-phase H2SO4 (sulfuric acid) abundances in Venus’ 85–100 km upper mesosphere, derived from 16 ground-based sub-mm spectroscopic observations in the period 2004–2008. Unlike the ubiquitous sulfuric acid solid/liquid aerosol, the gas phase would be photochemically active, potentially both source and sink for SO and SO2. H2SO4 is retrieved from sub-mm lines located in the same bandpass as the SO2 and SO lines described by Sandor et al. (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60). H2SO4 upper limits reported here are thus simultaneous and spatially coincident with measurements of SO2 and SO, providing for analysis of the three sulfur species collectively. The average H2SO4 abundance over 16 observations is 1 ± 2 ppb (i.e. <3 ppb). Upper limits for individual observations range from 3 to 44 ppb, where quality of the observing weather is the dominant constraint on measurement precision. The sum of H2SO4, SO2 and SO varies widely. In one comparison, the sum [H2SO4 + SO2 + SO] measured on one date differs by 10-σ from the sum measured 2 months later. We conclude that upper mesospheric sulfur atoms are not conserved among the three molecules, that H2SO4 is not a significant sulfur reservoir for balancing the observed variations of [SO2 + SO], and is not relevant to the (still unknown) photochemistry responsible for observed behavior of SO2 and SO. Having ruled out H2SO4, we infer that elemental sulfur is the most probable candidate for the needed third reservoir.  相似文献   

3.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

4.
5.
Ocean wave growth on Titan is considered. The classic Sverdrup–Munk theory for terrestrial wave growth is applied to Titan, and is compared with a simple energy balance model that exposes the effect of Titan’s environmental parameters (air density, gravity, and fluid density). These approaches are compared with the only previously-published (semi-empirical) model (Ghafoor, N.A.-L., Zarnecki, J.C., Challenor, P., Srokosz, M.A. [2000] J. Geophys. Res. 105, 12,077–12,091, hereafter G2k), and allow the impact of various parameters such as atmospheric density to be transparently explored.Our model, like G2k, suggests fully-developed significant wave heights on Titan Hs = 0.2 U2, where U is the windspeed (SI units): in dimensionless terms this is rather close to Hs = 0.2 U2/g, a rule of thumb previously noted for terrestrial waves (we find various datasets where the prefactor varies by ~2). It is noted that liquid and air densities affect the growth rate of waves, but not their fully-developed height: for 1 m/s winds wave amplitude reaches 0.15 m (75% of fully-developed) with a fetch of only 1 km, rather faster than predicted by G2k. Liquid viscosity has no major effect on gravity wave growth, but does influence the threshold windspeed at which gravity–capillary waves form in the first place.The model is used to develop predicted ranges for wave height to guide the design of the Titan Mare Explorer (TiME), a proposed Discovery-class mission to float a capsule on Ligeia Mare in 2023. For the expected maximum 1 m/s winds, a significant wave height of 0.2 m and wavelength of ~4 m can be expected. Assuming that wave heights follow Rayleigh statistics as they do on Earth, then given the wave period of ~4 s, individual waves of ~0.6 m might be encountered over a 3 month period.For predicted Titan winds at Kraken Mare, significant wave heights may reach ~0.6 m in the peak of summer but do not exceed the tidal amplitude at its northern end, consistent with the area around Mayda Insula being a tidal flat, while elsewhere on Kraken and Ligeia and at Ontario Lacus, shorelines may be wave- or tidally-dominated, depending on the specific location.  相似文献   

6.
Determining the optical constants of Titan aerosol analogues, or tholins, has been a major concern for the last three decades because they are essential to constrain the numerical models used to analyze Titan’s observational data (albedo, radiative transfer, haze vertical profile, surface contribution, etc.). Here we present the optical constant characterization of tholins produced with an RF plasma discharge in a (95%N2–5%CH4) gas mixture simulating Titan’s main atmospheric composition, and deposited as a thin film on an Al–SiO2 substrate. The real and imaginary parts, n and k, of the tholin complex refractive index have been determined from 370 nm to 900 nm wavelength using spectroscopic ellipsometry. The values of n decrease from n = 1.64 (at 370 nm) to n = 1.57 (at 900 nm) as well as the values of k which feature two behaviors: an exponential decay from 370 nm to 500 nm, with k = 12.4 × e?0.018λ (where λ is expressed in nm), followed by a plateau, with k = (1.8 ± 0.2) × 10?3. The trends observed for the PAMPRE tholins optical constants are compared to those determined for other Titan tholins, as well as to the optical constants of Titan’s aerosols retrieved from observational data.  相似文献   

7.
Photoionization of the upper atmosphere of Titan by sunlight is expected to produce a substantial ionospheric layer. We have solved one-dimensional forms of the mass, momentum, and energy conservation equations for ions and electrons and have obtained electron number densities of about 103 cm?3, using various model atmospheres. The significant ions in a CH4H2 atmosphere are H+, H3+, CH5+, CH5+, CH3+, and C2H5+. Electron temperatures may be as high as 1000°K, depending on the abundance of hydrogen in the high atmosphere. Interaction of the solar wind with the ionosphere is also discussed.  相似文献   

8.
We present spectral and spatial information for major volatile species in Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT 2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62 AU), following the comet’s perihelion passage on UT 2010 July 04. The total production rate for water on July 26 was (1.90 ± 0.12) × 1028 molecules s?1, and abundances of six trace gases (relative to water) were: CH3OH (1.58% ± 0.23%), C2H6 (0.39% ± 0.04%), NH3 (0.83% ± 0.20%), and HCN (0.13% ± 0.02%). A detailed analysis of intensities for water emission lines provided a rotational temperature of 35 ± 3 K. The mean OPR is consistent with nuclear spin populations in statistical equilibrium (OPR = 3.01 ± 0.18), and the (1σ) lower bound corresponds to a spin temperature >38 K. Our measurements were contemporaneous with a jet-like feature observed at optical wavelengths. The spatial profiles of four primary volatiles display strong enhancements in the jet direction, which favors release from a localized vent on the nucleus. The measured IR continuum is much more sharply peaked and is consistent with a dominant contribution from the nucleus itself. The peak intensities for H2O, CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the possible existence of a distributed source, such as the release of icy grains that subsequently sublimed in the coma. On UT September 18, no obvious emission lines were present in our spectra, nevertheless we obtained a 3σ upper limit Q(H2O) < 2.86 × 1027 molecules s?1.  相似文献   

9.
In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1–3 AU, and 5–12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ~10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2–C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ~104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the “wetted layer” model is the prediction that diurnal melt–freeze cycles alter the mixing ratio vs. depth of solutes present, or of other miscible components, largely through a process of fractional crystallization, but also potentially involving frost heave. Wetted layers are potentially durable and can involve significant mass transport of volatile materials in the near-surface, increasing in extent over many rotations of the nucleus prior to and just after perihelion passage, and causing stratification and trapping of the lowest-melting mixtures at depths of several metres. A possible mechanism for cometary outbursts is proposed involving a heat pulse reaching the liquid phase in the deepest wetted zone, leading to supersaturation and triggering the sudden release under pressure of dissolved gases, in particular CO2, CO, CH4 or N2, contained beneath a consolidated near-surface layer. This study indicates that liquid water can persist for long periods of time in the near-surface of some intermediate-sized bodies (102–103 km radius) within protoplanetary discs.  相似文献   

10.
Sang J. Kim  John Caldwell 《Icarus》1982,52(3):473-482
The 8.6-μm emission feature of Titan's infrared spectrum was analyzed using the Voyager temperature-pressure profile. Although both C3H8 and CH3D have bands at that wavelength, we show that CH3D dominates the observed emission on Titan. We derived a CH3D/CH4 mixing ratio using this band and the strong CH4 band at 7.7 μm. The corresponding D/H ratio is 4.2?1.5+2 × 10?4, neglecting deuterium fractionation with other molecules. The main uncertainty in this value comes from the continuum emission characteristics. The D/H ratio is apparently significantly enhanced on Titan with respect to published values for Saturn.  相似文献   

11.
The reactivity of C2(X1Σ+g) with simple saturated (CH4, C2H6 and C3H8) and unsaturated (C2H2 and C2H4) hydrocarbons has been studied in the gas phase over the temperature range 24-300 K using the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique. All reactions have been found to be very rapid in this temperature range and the rate coefficients are typically ?10−10 cm3 molecule−1 s−1 with the exception of methane for which the rate coefficient is one order of magnitude lower: ∼10−11 cm3 molecule−1 s−1. These results have been analyzed in terms of potential destruction sources of C2(X1Σ+g) in the atmospheres of Titan and the Giant Planets. It appears that the rate coefficient of the reaction 1C2 + CH4 should be updated with our new data and that reactions with C2H2, C2H4 and C2H6 should also be included in the existing photochemical models.  相似文献   

12.
The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m?2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m?2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ~0.05 kg m?2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (~10?3 W m?2). If the amount of atmospheric ethane is less than 0.6×10?5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m?2, then the liquid lifetime increases to ~56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10?5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10?5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.  相似文献   

13.
This work deals with the optical constant characterization of Titan aerosol analogues or “tholins” produced with the PAMPRE experimental setup and deposited as thin films onto a silicon substrate. Tholins were produced in different N2–CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical constants. The real (n) and imaginary (k) parts of the complex refractive index were determined using the spectroscopic ellipsometry technique in the 370–1000 nm wavelength range. We found that optical constants depend strongly on the methane concentrations of the gas phase in which tholins are produced: imaginary optical index (k) decreases with initial CH4 concentration from 2.3 × 10?2 down to 2.7 × 10?3 at 1000 nm wavelength, while the real optical index (n) increases from 1.48 up to 1.58 at 1000 nm wavelength. The larger absorption in the visible range of tholins produced at lower methane percentage is explained by an increase of the secondary and primary amines signature in the mid-IR absorption. Comparison with results of other tholins and data from Titan observations are presented. We found an agreement between our values obtained with 10% methane concentration, and Imanaka et al. (Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., Zare, R.N. [2004]. Icarus, 168, 344–366) values, in spite of the difference in the analytical method. This confirms a reliability of the optical properties of tholins prepared with various setups but with similar plasma conditions. Our comparison with Titan’s observations also raises a possible inconsistency between the mid-IR aerosol signature by VIMS and CIRS Cassini instruments and the visible Huygens-DISR derived data. The mid-IR VIMS and CIRS signatures are in agreement with an aerosol dominated by an aliphatic carbon content, whereas the important visible absorption derived from the DISR measurement seems to be incompatible with such an important aliphatic content, but more compatible with an amine-rich aerosol.  相似文献   

14.
The transition 111 ? 110 at 4.829 GHz of formaldehyde (H2CO) was the first one showing the anomalous absorption, i.e., the absorption against the cosmic microwave background. Anomalous absorption is an unusual phenomena. Structure of H2CC is very similar to that of H2CO and H2CS. Both H2CO and H2CS have already been identified in a number of cosmic objects. Though H2CC is not yet identified in the cosmic objects, we propose that H2CC may be identified in cool cosmic objects through its transition 111 ? 110 at 4.85 GHz in anomalous absorption.  相似文献   

15.
Complex organic materials may exist as haze layers in the atmosphere of Titan and as dark coloring agents on icy satellite surfaces. Laboratory measurements of optical constants of plausible complex organic materials are necessary for quantitative evaluation from remote sensing observations, and to document the existence of complex organic materials in the extraterrestrial environments. The recent Cassini VIMS and CIRS observations provide new constraints on Titan’s haze properties in the mid-infrared wavelength region. Here, we present the optical constants (2.5–25 μm) of Titan tholins generated with cold plasma irradiation of a N2/CH4 (90/10) gas mixture at pressures of 0.26 mbar, 1.6 mbar, and 23 mbar. Our new optical constants of three types of Titan tholins suggest that no single Titan tholin in this study fulfills all the observational constraints of the Titan haze material. The discrepancy remains a challenge for future modeling and laboratory efforts that aim toward a better understanding of Titan’s haze material.  相似文献   

16.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

17.
Building upon previous studies, we re-investigated the ethane spectrum between 1330 and 1610 cm?1 by combining unapodized spectra obtained at room temperature with a Bruker Fourier transform spectrometer (FTS) in Brussels and at 131 K with a Bruker FTS in Pasadena. The maximum optical path differences (MOPD) of the two datasets were 450 and 323.7 cm, corresponding to spectral resolutions of 0.0020 and 0.0028 cm?1, respectively. Of the 15,000 lines observed, over 4592 transitions were assigned to the ν6 (at 1379 cm?1), ν8 (at 1472 cm?1), ν412 (at 1481 cm?1) and 2ν49 (at 1388 cm?1) bands, and another 1044 transitions were located for the ν484 hot band (at 1472 cm?1). Our new analysis included an improved implementation of the Hamiltonian calculation needed to interpret the complex spectral structures caused by numerous interactions affecting these four modes of vibration. From these results, we created the first line-by-line database containing the molecular parameters for over 20,000 12C2H6 transitions at 7 μm.  相似文献   

18.
Ionization of the atmosphere of Titan by galactic cosmic rays is a very significant process throughout the altitude range of 100 to 400 km. An approximate form of the Boltzmann equation for cosmic ray transport has been used to obtain local ionization rates. Models of both ion and neutral chemistry have been employed to compute electron and ion density profiles for three different values of the H2/CH4 abundance ratio. The peak electron density is of the order 103 cm?3. The most abundant positive ions are C2H9+ and C3H9+, while the predicted densities of the negative ions H? and CH3? are very small (<10?4 that of the positive ions). It is suggested that inclusion of the ion chemistry is important in the computation of the H and CH3 density profiles in the lower ionosphere.  相似文献   

19.
Titan’s moment of inertia (MoI), estimated from the quadrupole gravity field measured by the Cassini spacecraft, is 0.342, which has been interpreted as evidence of a partially differentiated internal mass distribution. It is shown here that the observed MoI is equally consistent with a fully differentiated internal structure comprising a shell of water ice overlying a low-density silicate core; depending on the chemistry of Titan’s subsurface ocean, the core radius is between 1980 and 2120 km, and its uncompressed density is 2570–2460 kg m?3, suggestive of a hydrated CI carbonaceous chondrite mineralogy. Both the partially differentiated and fully differentiated hydrated core models constrain the deep interior to be several hundred degrees cooler than previously thought. I propose that Titan has a warm wet core below, or buffered at, the high-pressure dehydration temperature of its hydrous constituents, and that many of the gases evolved by thermochemical and radiogenic processes in the core (such as CH4 and 40Ar, respectively) diffuse into the icy mantle to form clathrate hydrates, which in turn may provide a comparatively impermeable barrier to further diffusion. Hence we should not necessarily expect to see a strong isotopic signature of serpentinization in Titan’s atmosphere.  相似文献   

20.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号