首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

2.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of ≈ 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times ≈ 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

3.
Asteroid 99942 Apophis is one of the most hazardous NEAs (near-Earth asteroids) today. Some specific features of its travel are the possibility of repeated Earth approaches, loss of forecast precision due to trajectory dispersions, and nondeterministic motion. These specific features do not only characterize Apophis. Special methods are needed to find possible collision trajectories among these travels. These trajectories are located in the vicinity of resonance collision orbits.The present paper discusses methods of detecting hazardous trajectories in the event of nondeterministic motion and characterizing these trajectories as applied to asteroid Apophis, precision losses in the event of trajectory dispersions, conditions of determinacy losses, and hazardous trajectories in the vicinity of resonance orbits.  相似文献   

4.
Studies of near-Earth asteroids are aimed at determining their dynamical and structural history. The mineralogy and petrology of 17 near-Earth asteroids are characterized using reflectance spectroscopy with ground-based telescopes as one method to address their major issues. Implications for the origin and evolution are discussed in a separate paper. Assuming the surfaces are composed of cosmically abundant materials, the presence of certain mineralogical species can be determined from diagnostic absorption features and spectral characteristics which have been studied under known laboratory conditions and understood in terms of crystal field theory. With one possible exception, the surface composition of near-Earth asteroids consists of common rock-forming minerals such as olivine, pyroxene, and phyllosilicates. Opaque components are present but cannot be mineralogically identified with existing experimental data. The spectrum of 2201 Oljato cannot be interpreted in terms of common rock-forming minerals. This spectrum was examined for cometary features because its high orbital eccentricity suggests a possible relation to comets. No common cometary features are identified in its spectrum. The predominance of mafic silicate absorption features in spectra of near-Earth asteroids compared to the majority of main-belt asteroids may be a primary compositional feature or may be the signature of relatively fresher asteroid material.  相似文献   

5.
By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.  相似文献   

6.
We present new observations and models of the shapes and rotational states of the eight near-Earth Asteroids (1580) Betulia, (1627) Ivar, (1980) Tezcatlipoca, (2100) Ra-Shalom, (3199) Nefertiti, (3908) Nyx, (4957) Brucemurray, and (5587) 1990 SB. We also outline some of their solar phase curves, corrected to common reference geometry with the models. Some of the targets may feature sizable global nonconvexities, but the observable solar phase angles were not sufficiently high for confirming these. None is likely to have a very densely cratered surface. We discuss the role of the intermediate topographic scale range in photometry, and surmise that this scale range is less important than large or small scale lengths.  相似文献   

7.
Photometric data on 17 binary near-Earth asteroids (15 of them are certain detections, two are probables) were analysed and characteristic properties of the near-Earth asteroid (NEA) binary population were inferred. We have found that binary systems with a secondary-to-primary mean diameter ratio Ds/Dp?0.18 concentrate among NEAs smaller than 2 km in diameter; the abundance of such binaries decreases significantly among larger NEAs. Secondaries show an upper size limit of Ds=0.5-1 km. Systems with Ds/Dp?0.5 are abundant but larger satellites are significantly less common. Primaries have spheroidal shapes and they rotate rapidly, with periods concentrating between 2.2 to 2.8 h and with a tail of the distribution up to ∼4 h. The fast rotators are close to the critical spin for rubble piles with bulk densities about 2 g/cm3. Orbital periods show an apparent cut-off at Porb∼11 h; closer systems with shorter orbital periods have not been discovered, which is consistent with the Roche limit for strengthless bodies. Secondaries are more elongated on average than primaries. Most, but not all, of their rotations appear to be synchronized with the orbital motion; nonsynchronous secondary rotations may occur especially among wider systems with Porb>20 h. The specific total angular momentum of most of the binary systems is similar to within ±20% and close to the angular momentum of a sphere with the same total mass and density, rotating at the disruption limit; this suggests that the binaries were created by mechanism(s) related to rotation near the critical limit and that they neither gained nor lost significant amounts of angular momentum during or since formation. A comparison with six small asynchronous binaries detected in the main belt of asteroids suggests that the population extends beyond the region of terrestrial planets, but with characteristics shifted to larger sizes and longer periods. The estimated mean proportion of binaries with Ds/Dp?0.18 among NEAs larger than 0.3 km is 15±4%. Among fastest rotating NEAs larger than 0.3 km with periods between 2.2 and 2.8 h, the mean proportion of such binaries is (66+10−12)%.  相似文献   

8.
Photometric observations of 11 near-Earth asteroids were made within a regular NEA CCD photometric programme at Ondejov Observatory in the first half of 1994. This paper shows obtained R lightcurves, V-R, R-I, and B-V color indices, and rotation preriods for 6 of them. Among the presented results, the most interesting are those for (4954) Eric, for which we obtained several high-quality lightcurves and which seems to indicate a surface heterogeneity, (1864) Daedalus, for which interesting comparison with older observations by Gehrelset al. (1971) can be made, and 1993 VW, for which the unusual color characteristics were observed. Two (1994 AW1 and 1994 GY) of the other three observed objects have fast rotations with periods of about 2.5 hours and relatively low amplitudes. Subsequent analysis of additional lightcurve data for 1994 AW1 has revealed a presence of two periods in its lightcurve (Pravecet al. 1995). The last object presented here is 1994 JF1, for which only lower limits on period and amplitude were determined.  相似文献   

9.
We investigate the relevance of the Yarkovsky effect for the origin of kilometer and multikilometer near-Earth asteroids (NEAs). The Yarkovsky effect causes a slow migration in semimajor axis of main belt asteroids, some of which are therefore captured into powerful resonances and transported to the NEA space. With an innovative simulation scheme, we determine that in the current steady-state situation 100-160 bodies with H < 18 (roughly larger than 1 km) enter the 3/1 resonance per million years and 40-60 enter the ν6 resonance. The ranges are due to uncertainties on relevant simulation parameters such as the time scales for collisional disruption and reorientation, their size dependence, and the strength of the Yarkovsky and YORP effects. These flux rates to the resonances are consistent with those independently derived by Bottke et al. (2002, Icarus 156, 399-433) with considerations based only on the NEA orbital distribution and dynamical lifetime. Our results have been obtained assuming that the main belt contains 1,300,000 asteroids with H < 18 and linearly scale with this number. Assuming that the cumulative magnitude distribution of main belt asteroids is N(< H) ∝ 10γ′H with γ′ = 0.25 in the 15.5 < H < 18 range (consistent with the results of the SDSS survey), we obtain that the bodies captured into the resonances should have a similar magnitude distribution, but with exponent coefficient γ = 0.33-0.40. The lowest value is obtained taking into account the YORP effect, while higher values correspond to a weakened YORP or to YORP-less cases. These values of γ are all compatible with the debiased magnitude distributions of the NEAs according to Rabinowitz et al. (2000, Nature 403, 165-166), Bottke et al. (2000b, Science 288, 2190-2194), and Stuart (2001, Science 294, 1691-1693). Hence the Yarkovsky and YORP effects allow us to understand why the magnitude distribution of NEAs is only moderately steeper than that of the main belt population. The steepest main belt distribution that would still be compatible with the NEA distribution has exponent coefficient γ′ ∼ 0.3.  相似文献   

10.
S. Marchi  M. Lazzarin  S. Magrin 《Icarus》2005,175(1):170-174
We present new visible and near-infrared spectroscopic observations of 4 small, previously unclassified, near-Earth objects (NEOs). They appear to have basaltic surfaces, and hence they can be classified as V-types. Their visible spectra exhibit a closer spectral match with the Main-Belt (MB) Asteroid (4) Vesta than the other, presently known, V-type NEOs and MB asteroids. The near-infrared spectrum of Asteroid 2003 FT3 shows—for the first time among NEOs—a peculiar shape of the 1 μm band, maybe suggesting an overabundance of olivine compared to the other V-types and to (4) Vesta. The presence of V-type objects among NEOs may be a consequence of the delivery processes connecting the inner MB to the near-Earth region. On the basis of the orbital parameters of the NEOs presented here, both the resonances (3:1 and ν6), usually considered as the most relevant gateways for the production of near-Earth asteroids, should have been active to transfer the bodies from the MB region.  相似文献   

11.
Here we show results from thermal-infrared observations of km-sized binary near-Earth asteroids (NEAs). We combine previously published thermal properties for NEAs with newly derived values for three binary NEAs. The η value derived from the near-Earth asteroid thermal model (NEATM) for each object is then used to estimate an average thermal inertia for the population of binary NEAs and compared against similar estimates for the population of non-binaries. We find that these objects have, in general, surface temperatures cooler than the average values for non-binary NEAs as suggested by elevated η values. We discuss how this may be evidence of higher-than-average surface thermal inertia. This latter physical parameter is a sensitive indicator of the presence or absence of regolith: bodies covered with fine regolith, such as the Earth’s moon, have low thermal inertia, whereas a surface with little or no regolith displays high thermal inertia. Our results are suggestive of a binary formation mechanism capable of altering surface properties, possibly removing regolith: an obvious candidate is the YORP effect.We present also newly determined sizes and geometric visible albedos derived from thermal-infrared observations of three binary NEAs: (5381) Sekhmet, (153591) 2001 SN263, and (164121) 2003 YT1. The diameters of these asteroids are 1.41 ± 0.21 km, 1.56 ± 0.31 km, and 2.63 ± 0.40 km, respectively. Their albedos are 0.23 ± 0.13, 0.24 ± 0.16, and 0.048 ± 0.015, respectively.  相似文献   

12.
We present thermal infrared photometry and spectrophotometry of four near-Earth asteroids (NEAs), namely (433) Eros, (66063) 1998 RO1, (137032) 1998 UO1, and (138258) 2000 GD2, using the United Kingdom Infrared Telescope (UKIRT) in 2002. For two objects, i.e. (433) Eros and (137032) 1998 UO1, quasi-simultaneous optical observations were also obtained, using the Jacobus Kapteyn Telescope (JKT). For (127032) 1998 UO1, we obtain a rotation period P=3.0±0.1 h and an absolute visual magnitude HV=16.7±0.4. The Standard Thermal Model (STM), Fast Rotating Model (FRM) and near-Earth asteroid Thermal Model (NEATM) have been fitted to the IR fluxes to determine effective diameters Deff, geometric albedos pv, and beaming parameters η. The derived values are (433) Eros: Deff=23.3±3.5 km (at lightcurve maximum), pv=0.24±0.07, η=0.95±0.19; (66063) 1998 RO1: , ; (137032) 1998 UO1: Deff<1.13 km, pv>0.29; (138258) 2000 GD2: Deff=0.27±0.04 km, , η=0.74±0.15. (66063) 1998 RO1 is a binary asteroid from lightcurve characteristics [Pravec, P., and 56 colleagues, 2006. Icarus 181, 63-93] and we estimate the effective diameter of the primary (Dp) and secondary (Ds) components: and . The diameter and albedo of (138258) 2000 GD2 are consistent with the trend of decreasing diameter for S- and Q-type asteroids found by Delbó et al. [Delbó, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. A possible trend of increasing beaming parameter with diameter for small (less than about 3 km) S- and Q-type asteroids is found.  相似文献   

13.
We present the results of thermal-infrared observations of 20 near-Earth asteroids (NEAs) obtained in the period March 2000-February 2002 with the 10-m Keck-I telescope on Mauna Kea, Hawaii. The measured fluxes have been fitted with thermal-model emission continua to determine sizes and albedos. This work increases the number of NEAs having measured albedos by 35%. The spread of albedos derived is very large (pv=0.02−0.55); the mean value is 0.25, which is much higher than that of observed main-belt asteroids. In most cases the albedos are in the ranges expected for the spectral types, although some exceptions are evident. Our results are consistent with a trend of increasing albedo with decreasing size for S-type asteroids with diameters below 20 km. A number of objects are found to have unexpectedly low apparent color temperatures, which may reflect unusual thermal properties. However, the results from our limited sample suggest that high thermal-inertia, regolith-free objects may be uncommon, even amongst NEAs with diameters of less than 1 km. We discuss the significance of our results in the light of information on these NEAs taken from the literature and the uncertainties inherent in applying thermal models to near-Earth asteroids.  相似文献   

14.
A statistical study has been carried out of the availability of favourable flight opportunities to near-Earth asteroids with orbits similar to the Earth's. Emphasis is given to rendezvous-type mission profiles employing two-burn impulsive transfers. Velocity-optimized Lambert trajectories for a sample of 27 actual objects were calculated and compiled in a database. The velocity and flight time statistics of the resulting 1200 different solutions covering a period of 11 years have been investigated and discussed. Comparison with typical flight profiles to the Moon and near planets has revealed flight opportunities to 5 objects within a decade from the present requiring less ΔV than favourable flight opportunities to Mars or Venus. One of the objects involved, 1999 AO10, can be rendezvoused with using a total velocity increment that is smaller than that required to establish a lunar orbiter. The use of slow flybys for the most scientifically appealing targets is illustrated through an example trajectory involving the C-class binary object 1996 FG3. The challenges and opportunities for doing science in proximity to such small objects are also discussed.  相似文献   

15.
We present thermal infrared photometry and spectrophotometry of six Near-Earth Asteroids (NEAs) using the 3.8 m United Kingdom Infrared Telescope (UKIRT) together with quasi-simultaneous optical observations of five NEAs taken at the 1.0 m Jacobus Kapteyn Telescope (JKT). For Asteroid (6455) 1992 HE we derive a rotational period P=2.736±0.002 h, and an absolute visual magnitude H=14.32±0.24. For Asteroid 2002 HK12 we derive . The Standard Thermal Model (STM), the Fast Rotating Model (FRM) and the Near-Earth Asteroid Thermal Model (NEATM) have been fitted to the measured fluxes to derive albedos and effective diameters. The derived geometric albedos and effective diameters are (6455) 1992 HE: pv=0.26±0.08, Deff=3.55±0.5 km; 1999 HF1: pv=0.18±0.07, ; 2000 ED104: pv=0.18±0.05, Deff=1.21±0.2 km; 2002 HK12: , Deff=0.62±0.2 km; 2002 NX18: pv=0.031±0.009, Deff=2.24±0.3 km; 2002 QE15: , Deff=1.94±0.4 km. The limitations of using the NEATM to observe NEAs at high phase angles are discussed.  相似文献   

16.
We consider the perturbations on near-earth asteroid orbits due to various forces stemming from solar radiation. We find that the existence of precise radar astrometric observations at multiple apparitions, spanning periods on the order of 10 years, allows the detection of such forces on bodies as large as kilometer across. Indeed, the perturbations are so substantial that certain of the forces can be essential to fit an orbit to the observations. In particular, we show that the recoil force of thermal radiation from the asteroid, known as the Yarkovsky effect, is the most important of these unmodeled perturbations. We also show that the effect of reflected light can be important if even moderate albedo variations are present, while moderate changes in oblateness appear to have a far smaller effect. An unexpected result is that the Poynting–Robertson effect, typically only considered for submillimeter dust particles, could be observable on smaller asteroids with high eccentricity, such as 1566 Icarus. Finally, we also study the possibility of improving the orbit uncertainty through well-timed optical observations which might help in better detection of these nongravitational perturbations.  相似文献   

17.
We present a method to constrain the albedo and diameters of near-Earth asteroids (NEAs) based on thermal flux in their near-infrared spectra (0.7–2.5 μm) using the Standard Thermal Model. Near-infrared spectra obtained with the SpeX instrument on NASA Infrared Telescope Facility are used to estimate the albedo and diameters of 12 NEAs (1992 JE, 1992 UY4, 1999 JD6, 2004 XP14, 2005 YY93, 2007 DS84, 2005 AD13, 2005 WJ56, 1999 JM8, 2005 RC34, 2003 YE45, and 2008 QS11). Albedo estimates were compared with average albedo for various taxonomic classes outlined by Thomas et al. (Thomas, C.A. et al. [2011]. Astron. J. 142(3)) and are consistent with their results. Spectral band parameters, like band centers, are derived and compared to spectra of laboratory mineral mixtures and meteorites to constrain their composition and possible meteorite analogs. Based on our study we estimate the albedos and diameters of these NEAs and compare them with those obtained by other techniques such as ground-based mid-infrared, Spitzer thermal infrared and Arecibo radar. Our results are broadly consistent with the results from other direct methods like radar. Determining the compositions of low albedo asteroids is a challenge due to the lack of deep silicate absorption features. However, based on weak absorption features and albedo, we suggest possible meteorite analogs for these NEAs, which include black chondrites, CM2 carbonaceous chondrites and enstatite achondrites. We did not find any specific trends in albedo and composition among the asteroids we observed.  相似文献   

18.
Previous studies of non-nuclear diversion of near Earth asteroids have largely ignored the use of pure kinetic energy impacts, partly due to apparent limits on impact speeds of 10-. Here, I will consider the use of a near-term solar sail to deliver an inert projectile onto a retrograde solar orbit, thus raising impact speeds to at least . Such high-energy orbits increase the energy liberated during impact by a factor of 40 or more, while reducing the required projectile mass by at least 95%. This considerable reduction in projectile mass allows kilometre-sized asteroids to be diverted with current launch vehicles, near-term technologies and at a cost comparable to a modest deep space mission.  相似文献   

19.
A survey of 62 small near-Earth asteroids was conducted to determine the rotation state of these objects and to search for rapid rotation. Since results for 9 of the asteroids were previously published (Pravec, P., Hergenrother, C.W., Whiteley, R.J., Šarounová, L., Kušnirák, P., Wolf, M. [2000]. Icarus 147, 477-486; Pravec, P. et al. [2005] Icarus 173, 108-131; Whiteley, R.J., Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154; Hergenrother, C.W., Whiteley, R.J., Christensen, E.J. [2009]. Minor Planet Bull. 36, 16-18.), this paper will present results for the remaining 53 objects. Rotation periods significantly less than 2 h are indicative of intrinsic strength in the asteroids, while periods longer than 2 h are typically associated with gravitationally bound aggregates. Asteroids with absolute magnitude (H) values ranging from 20.4 to 27.4 were characterized. The slowest rotator with a definite period is 2004 BW18 with a period of 8.3 h, while 2000 DO8 and 2000 WH10 are the fastest with periods of 1.3 min. A minimum of two-thirds of asteroids with H > 20 are fast rotating and have periods significantly faster than 2.0 h. The percentage of rapid rotators increases with decreasing size and a minimum of 79% of H ? 24 objects are rapid rotators. Slowly-rotating objects, some with periods as long as 10-20 h, make up a small though significant fraction of the small asteroid population. There are three fast rotators with relatively large possible diameters (D): 2001 OE84 with 470 ? D ? 820 m (Pravec, P., Kušnirák, P., Šarounová, L., Harris, A.W., Binzel, R.P., Rivkin, A.S. [2002b]. Large coherent Asteroid 2001 OE84. In: Warmbein, B. (Eds.), Proceedings of Asteroids, Comets, Meteors - ACM 2002. Springer, Berlin, pp. 743-745), 2001 FE90 with 265 ? D ? 594 m (Hicks, M., Lawrence, K., Rhoades, H., Somers, J., McAuley, A., Barajas, T. [2009]. The Astronomer’s Telegrams, # 2116), and 2001 VF2 with a possible D of 145 ? D ? 665 m. Using the diameters derived from nominal absolute magnitudes and albedos, the remainder of the fast rotating population is completely consistent with D ? 200 m. Even when taking into account the largest possible uncertainties in the determination of diameters, the remainder must all have D ? 400 m. With the exceptions of 2001 OE84, this result agrees with previous upper diameter limits for fast rotators in Pravec and Harris (Pravec, P., Harris, A.W. [2000]. Icarus 148, 589-593) and Whiteley et al. (Whiteley, R.J, Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154.  相似文献   

20.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号