首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major, trace and rare earth element (REE) compositions of upper Proterozoic metavolcanic and metasedimentary rocks from the Tsaliet and Tembien Groups in the Werri district of northern Ethiopia were determined to examine their tectonic setting of eruption, provenance and source area weathering conditions. Tsaliet Group metavolcanic rocks in the Werri area have sub-alkaline chemistry characterized by low to intermediate SiO2 contents, high Al2O3, low MgO and very low Cr and Ni. High field strength element (HFSE) abundances are highly variable. ∑REE abundances vary from 66.7 to 161.3 ppm, and chondrite-normalized REE patterns are moderately fractionated, with LaN/YbN values of between 3.1 and 9.0. Europium anomalies are variable (Eu/Eu* 0.80–1.21) but are generally positive (average Eu/Eu* 1.06). On tectonic discrimination diagrams, most samples have either volcanic-arc chemistry or fall in the overlap field with mid-oceanic ridge basalt (MORB). However, primitive mantle-normalized trace element abundances are comparable with sub-alkaline basalts from developed island arcs. 147Sm/144Nd ratios range from 0.1167 to 0.1269 (n = 3), yielding initial εNd(800 Ma) of +3.8 to +4.9 and mean TDM model age of 0.96 Ga, indicative of derivation from juvenile Neoproterozoic mantle. Metasediments from three locations (Werri1, Werri2 and Tsedia) in the Werri and Tsedia Slates have similar Al2O3, TiO2 and HFSE contents but variable and low Na2O, CaO and K2O. Cr and Ni are slightly enriched in the Werri2 and Tsedia suites. SiO2 is very variable, with average values of 70.75, 72.2 and 66.4 wt.% in the Werri1, Werri2 and Tsedia suites, respectively. ∑REE abundances in the metasediments (14.74–108.1) are lower than in the metavolcanics, and are slightly less fractionated, with LaN/YbN ratios of 0.8–5.9. Europium anomalies vary (Eu/Eu* 0.80–1.21) but are insignificant on average (Eu/Eu* 0.96). High values for the Chemical Index of Alteration (generally 70–90), and Plagioclase Index of Alteration (>75) in the Werri metasediments indicate moderate to severe chemical weathering in their source. Average major and trace element compositions of the metasediments and their REE patterns are comparable with the metavolcanics. 147Sm/144Nd ratios of the metasediments range from 0.1056 to 0.1398 (n = 4), with initial εNd(800 Ma) of +3.4 to +5.0 and mean TDM model age of 0.97 Ga, indicating derivation from juvenile Neoproterozoic crust similar to the underlying metavolcanics, with minimal (4–10%) contribution from older crust. The most sensitive tectonic setting discriminators indicate the Werri metasediments represent developed oceanic island arc sediments. The chemical similarity of the Werri metavolcanics to the nearby Adwa metavolcanics, Nakfa terrane in Eritrea, and volcanic units in central Saudi Arabia imply that juvenile Neoproterozoic Arabian Nubian Shield crust extended south at least as far as the Werri area of northern Ethiopia. The comparable geochemistry of the metasediments and their underlying lithologies attests to their derivation from this juvenile crustal material.  相似文献   

2.
The Manipur Ophiolite Complex (MOC) located in the Indo-Myanmar Orogenic Belt (IMOB) of Northeast India forms a section of the Tethyan Ophiolite Belt of the Alpine–Himalayan orogenic system. Whole rock compositions and mineral chemistry of mantle peridotites from the MOC show an affinity to the abyssal peridotites, characterized by high contents of Al2O3 (1.28–3.30 anhydrous wt.%); low Cr# of Cr-spinel (0.11–0.27); low Mg# of olivine (∼Fo90) and high Al2O3 in pyroxenes (3.71–6.35 wt.%). They have very low REE concentrations (∑REE = 0.48–2.14 ppb). Lherzolites display LREE-depleted patterns (LaN/SmN = 0.14–0.45) with a flat to slightly fractionated HREE segments (SmN/YbN = 0.30–0.65) whereas Cpx-harburgites have flat to upward-inflected LREE patterns (LaN/SmN = 0.13–1.23) with more fractionated HREE patterns (SmN/YbN = 0.13–0.65) than the lherzolite samples. Their platinum group elements (PGE) contents (<50 ppb) and distinct mantle-normalised PGE patterns with the Pd/Ir values (1.8–11.9) and Pt/Pt* values (0.2–1.1) show an affinity to the characteristic of the residual mantle material. Evaluation of mineralogical and petrological characteristics of these peridotites suggests that they represent the residues remaining after low degree of partial melting (∼2–12%) in the spinel stability field of a mid-oceanic ridge environment. The well-preserved mid-oceanic ridge characteristics of these peridotites further suggest that the mantle section was subsequently trapped in the forearc region of the subduction zone without undergoing significant modification in their chemistry by later subduction-related tectonic and petrological processes before its emplacement to the present crustal level.  相似文献   

3.
The abandoned Sn-W Ribeira mine, northeast of Portugal, contained quartz veins with cassiterite, wolframite, scheelite, pyrite, arsenopyrite, sphalerite, chalcopyrite, manganocolumbite, bismuthinite, native bismuth, phosphates and carbonates. The exploration took place on the northern slope of the Viveiros stream, which is an affluent of the Sabor River. The waste-rock dumps and tailings were deposited on the hillside, close to the mine and are nowadays exposed to significant weathering and erosion, as they are not vegetated. The eroded material is transported by the Viveiros stream toward the Sabor River. A seasonal stream drains the tailings. The stream sediments samples were collected along the Viveiros stream, in the seasonal stream, in a seasonal spring at the bottom of the tailings, in the Sabor River and in other streams not affected by mine workings, following the mine influence along the Viveiros stream and in the Sabor River (1.2 km away from the mine workings). The data show that the degree of pollution increases along the Viveiros stream, especially in winter. The highest degree of pollution is for As, In, W, Sn and Bi. The sediments from the drainage of the main tailings are particularly polluted during winter, by Bi, In and Sn. The sedimentary precipitate from the spring is polluted in Cu, As, In, Sn, Ta, W, Bi, Zn, Nb, Ag, Sb and Ta. The sediments from the Sabor River are significantly polluted by As, Ag, In, Sn, W and Bi. The sediments from the regional streams, Viveiros stream and Sabor River have similar REE (NASC normalized) patterns (ΣREE = 131.7–185.9 mg/kg, LaN/LuN = 1.23–1.42 and Eu/Eu* = 1.02), while those from the seasonal stream, crossing the main tailings, are enriched in REE (ΣREE = 250.3–283.6 mg/kg, LaN/LuN = 1.6–2.09 and Eu/Eu* = 0.96). The general decrease in LaN/LuN values with increase in total Fe2O3 can be explained by the partitioning of HREE to the solid Fe-oxides phase. The sedimentary precipitate and coatings, which are mainly formed by Fe-oxy-hydroxides, but also contain jarosite, are impoverished in all REE. The impoverishment can be explained by the release of REE from the surface of the Fe-oxy-hydroxides, which occurs due to a local lowering of pH, caused by jarosite dissolution. During successive alternate cycles of wet and dry conditions, takes place the formation of Fe-oxy-hydroxides and jarosite in the sedimentary precipitate and coatings. The subsequent dissolution of jarosite releases acidity, thus promoting de-sorption of REE from the Fe-oxy-hydroxides mineral phases.  相似文献   

4.
Kajan subvolcanic rocks in the Urumieh–Dokhtar magmatic arc (UDMA), Central Iran, form a Late Miocene-Pliocene shallow-level intrusion. These subvolcanics correspond to a variety of intermediate and felsic rocks, comprising quartz diorite, quartz monzodiorite, tonalite and granite. These lithologies are medium-K calc-alkaline, with SiO2 (wt.%) varying from 52% (wt.%) to 75 (wt.%). The major element chemical data also show that MgO, CaO, TiO2, P2O5, MnO, Al2O3 and Fe2O3 define linear trends with negative slopes against SiO2, whilst Na2O and K2O are positively correlated with silica. Contents of incompatible trace elements (e.g. Ba, Rb, Nb, La and Zr) become higher with increasing SiO2, whereas Sr shows an opposite behaviour. Chondrite-normalized multi-element patterns show enrichment in LILE relative to HFSE and troughs in Nb, P and Ti. These observations are typical of subduction related magmas that formed in an active continental margin. The Kajan rocks show a strong affinity with calc-alkaline arc magmas, confirmed by REE fractionation (LaN/YbN = 4.5–6.4) with moderate HREE fractionation (SmN/YbN = 1.08–1.57). The negative Eu anomaly (Eu/Eu* <1), the low to moderate Sr content (< 400 ppm) and the Dy/Yb values reflect plagioclase and hornblende (+- clinopyroxene) fractionation from a calc-alkaline melt Whole–rock Sr and Nd isotope analyses show that the 87Sr/86Sr initial ratios vary from 0.704432 to 0.705989, and the 143Nd/144Nd initial ratios go from 0.512722 to 0.512813. All the studied samples have similar Sr-Nd isotopes, indicating an origin from a similar source, with granite samples that has more radiogenic Sr and low radiogenic Nd isotopes, suggesting a minor interaction with upper crust during magma ascent. The Kajan subvolcanic rocks plot within the depleted mantle quadrant of the conventional Sr-Nd isotope diagram, a compositional region corresponding to mantle-derived igneous rocks.  相似文献   

5.
6.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

7.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

8.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

9.
Mesoarchean to Neoarchean orthogneisses (2.95–2.79 Ga) in the Fiskenæsset region, southern West Greenland, are composed of an older suite of metamorphosed tonalites, trondhjemites, and granodiorites (TTGs), and a younger suite of high-K granites. The TTGs are characterized by high Al2O3 (14.2–18.6 wt.%), Na2O (3.4–5.13 wt.%), and Sr (205–777 ppm), and low Y (0.7–17.4 ppm) contents. On chondrite- and N-MORB-normalized trace element diagrams, the TTGs have the following geochemical characteristics: (1) highly fractionated REE patterns (La/Ybcn = 14–664; La/Smcn = 4.3–11.0; Gd/Ybcn = 1.5–19.7); (2) strong positive anomalies of Sr (Sr/Sr* = 1.0–15.9) and Pb (Pb/Pb* = 1.4–34.9); and (3) large negative anomalies of Nb (Nb/Nb* = 0.01–0.34) and Ti (Ti/Ti* = 0.1–0.6). The geochemical characteristics of the TTGs and trace element modeling suggest that they were generated by partial melting of hydrous basalts (amphibolites) at the base of a thickened magmatic arc, leaving a rutile-bearing eclogite residue. Field observations suggest that spatially and temporarily associated tholeiitic basalts (now amphibolites) in the Fiskenæsset region might have been the sources of TTG melts. The high-K granites have steep REE patterns (La/Ybcn = 3.8–506; La/Smcn = 2.7–18.9; Gd/Ybcn = 0.92–12.1) and display variably negative Eu anomalies (Eu/Eu* = 0.37–0.96) and moderate Sr (84–539 ppm) contents. Four outlier granite samples have variably positive Eu (Eu/Eu* = 1.0–12) anomalies. Given that the granodiorites have higher K2O/Na2O than the tonalites and trondhjemites, it is suggested that the granites were derived from partial melting of the granodiorites. It is speculated that the dense eclogitic residues, left after TTG melt extraction, were foundered into the sub-arc mantle, leading to basaltic underplating beneath the lower rust. Melting of the granodiorites in response to the basaltic underplating resulted in the production of high-K granitic melts. Formation of the Fiskenæsset TTGs, the foundering of the eclogitic residues into the mantle, and the emplacement of the high-K granites led to the growth of Archean continental crust in the Fiskenæsset region.  相似文献   

10.
Trace elements and rare earth elements (REEs) of Lias-aged cherts in the Gumushane area were studied in order to understand their origin and depositional environment. Twenty three chert samples from five stratigraphic sections were analysed by inductively coupled plasma-mass spectrometry, X-ray diffraction, and mineralogical investigation. Lias cherts in the study area are microcrystalline, cryptocrystalline quartz, and megaquartz depending on mineralogical content. Trace elements of the cherts were compared with PAAS, Co, Y, and Th had stronger depletions in the five sections, whereas V, Ni, Zr, Nb, and Hf had smaller depletions. The distribution of Zr, Hf, and Ta yields Zr/Hf, Zr/Ta and Hf/Ta ratios (25/645, 37/665, and 0.18/3, respectively) that differ from those of chondrites and average upper continental crust, suggesting that these elements are likely non-detrital but are sourced from seawater. Th/U ratios range from 0.04 to 0.45 and are lower than those of the upper continental crust (average: 3.9). Lias-aged cherts have low total REE abundances and stronger depletions in five sections of the PAAS and chondrite-normalised plots. The cherts are characterised by a positive Eu anomaly (average: 4.9) and LREE-enrichment (LaN/YbN = average: 3.5). In addition, about one-half of the cherts exhibit positive Ce anomaly (range: 0.25–2.58), chondritic Y/Ho values (range: 3.3–60), and low (La/Ce)N values (average: 1.8). REE and trace element abundance in Lias cherts indicate that these elements were likely derived from hydrothermal solutions, terrigenous sources, and seawater. The REE patterns of the cherts show that they were probably deposited close to a continental margin.  相似文献   

11.
As part of Central Asian Orogenic Belt (CAOB), the Central Tianshan zone plays a crucial role in the reconstruction of the tectonic evolution of the CAOB. Furthermore, it is bordered by the Tarim Craton to the south, and the comparable evolutionary history between them enables the Central Tianshan zone to provide essential information on the crustal evolution of the Tarim Craton. The eastern segment of the Central Tianshan tectonic zone is characterized by the presence of numerous Precambrian metamorphic rocks, among which the Xingxingxia Group is the most representative one. The granitoids gneisses, intruded into the Xingxingxia Group, consist of two major lithological assemblages: (1) biotite-monzonitic gneisses and (2) biotite-plagioclase gneisses. These metamorphosed granitoid rocks are characterized by enrichment in SiO2, Al2O3 and K2O and depletion in MgO and FeOT. The Rittmann index (σ) spreads between 1.44 and 2.21 and ACNK (Al2O3/(CaO + Na2O + K2O)) ranges from 1.03 to 1.08, indicating that these granitoid gneisses are high-K calc-alkaline and peraluminous. Trace element data indicate that the studied samples are enriched in LREE with moderate REE fractionated patterns ((La/Yb)N = 10.5–75.3). The concentrations of HREE of the garnet-bearing gneisses are significantly higher than those of garnet-free gneisses. The former show pronounced negative Eu anomalies (Eu/Eu* = 0.32–0.57), while the latter are characterized by negligible negative Eu anomalies to moderate positive Eu anomalies (Eu/Eu* = 0.80–1.35). In addition, the enrichment of LILE (Rb, Th, K, Pb) and depletion of HFSE (Ta, Nb, P, Ti) of the examined granitoid gneisses are similar to typical volcanic-arc granites. Zircons U–Pb dating on the biotite monzonitic gneiss yields a weighted mean 206Pb/238U age of 942.4 ± 5.1 Ma, suggesting their protoliths were formed in the early Neoproterozoic, which is compatible with the time of the assembly of supercontinent Rodinia. The zircons have a large εHf(t) variation from −5.6 to +3.2, suggesting that both old crust-derived magmas and mantle-derived juvenile materials contributed to the formation of their protoliths. Based on field observation, and petrological, geochemical and geochronological investigations, we infer that the granitoid gneisses from Xingxingxia were probably formed on a continental arc that resulted from the interaction of Australia and the Tarim Craton during the assembly of the Rodinia supercontinent, and that the Central Tianshan zone was a part of the Tarim Craton during that time. Besides, the Grenvillian orogenic events may have developed better in the Tarim Craton than previously expected.  相似文献   

12.
The Naga Ophiolite Belt is a part of the Naga-Arakan-Yoma flysch trough that occurs along the Indo-Myanmar border. It is represented by peridotites, mafic-ultramafic cumulates, mafic volcanics, mafic dykes, plagiogranites, pelagic sediments and minor felsic to intermediate intrusives. Minor plagiogranites, gabbros and thin serpentinite bands occur juxtaposed near Luthur, with the slate-phyllite-metagreywacke sequence (Phokpur Formation) adjacent to the contact. The development of tonalites, trondhjemites and diorites in the oceanic crust, which is grouped as plagiogranites, offers an opportunity to study the process of formation of silicic melts from mafic crust. Plagiogranites from Naga Ophiolite Belt contains moderate SiO2 (51.81–56.71 wt.%), low K2O (0.08–1.65 wt.%) and high Na2O (4.3–5.03 wt.%). The Naga Ophiolite Belt plagiogranites like ocean-ridge granites contain low K2O, high Na2O and CaO. The rocks investigated from Naga Ophiolite Belt contain TiO2 concentrations above the lower limit for fractionated Mid Oceanic Ridge Basalt which is above 1 wt% of TiO2 and the ternary plots of A (Na2O + K2O) F(FeOT) M(MgO) and TiO2-K2O-SiO2/50 indicate that the plagiogranite are tholeiitic in character and gabbro samples are calc-alkaline in nature. The plagiogranites are enriched in Rb, Ba, Th, U, Nb and Sm against chondrite with negative anomalies on Sr and Zr whereas Y and Yb are depleted to Mid Oceanic Ridge Basalt. The chondrite normalized REE patterns of the plagiogranite display enrichments in LREE (LaN/SmN: 2.37–3.62) and flat HREE (Eu/Eu*: 0.90–1.06). The Mid Oceanic Ridge Basalt normalization of gabbro is characterized by strong enrichment of LILE like Ba and Th. The REE pattern is about 50–100 times chondrite with slight enrichment of LREE (LaN/SmN = 2.21–3.13) and flat HREE (Eu/Eu*: 0.94–1.19). The major-element and trace element data of the NOB plagiogranites and their intrusive nature with host gabbroic rock suggest that the plagiogranites were produced by fractional crystallization of basaltic parental magmas at Mid Oceanic Ridge.  相似文献   

13.
The Borborema Province, northeastern Brazil, occupies a central position in pre-drift reconstructions of western Gondwana, making an understanding of its geological evolution crucial for Neoproterozoic reconstructions. In recent years, it has been proposed that the Borborema Province grew by accretion of distinct tectonic terranes. In order to test this hypothesis, we compare here the geochemistry of orthogneisses and metasedimentary rocks across a proposed terrane boundary in the Central Domain of the province. Orthogneiss samples show smooth trends in Harker diagrams and similar rare earth element (REE) patterns, characterized by sharp decreases from La to Sm (chondrite-normalized La/Sm = 3–6) and flat heavy REE profiles (chondrite-normalized Tb/Yb = 1.5–2.5), with small or no Eu anomalies. In primitive mantle-normalized multi-element diagrams, all samples show parallel patterns characterized by sharp negative anomalies of U, Ta, Nb, P and Ti. The metasedimentary samples show little scatter of the major elements in Harker diagrams, suggesting that their chemistry was little affected by post-depositional diagenesis and metamorphism. They have indistinguishable chondrite-normalized REE patterns, characterized by light REE enrichment, flat heavy REE (normalized Tb/Y = 1–2) and small or no negative Eu anomalies, and similar ratios of immobile trace elements (e.g., Th/Sc, Zr/Sc). The geochemistry of the metasedimentary samples is comparable in many ways to those of the orthogneisses, suggesting that these may have been an important source of the precursor sedimentary rocks. These data do not support the terrane accretion hypothesis, rather suggesting the existence of a continuous basement that became available for erosion during intraplate continental extension in the late Neoproterozoic. Comparisons of the studied sequences with those present in the Northern Domain suggest that most, if not all of the Neoproterozoic geodynamic evolution of Borborema Province, occurred in an intracontinental setting.  相似文献   

14.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

15.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

16.
The Middle Miocene porphyry granitoid stocks of Meiduk and Parkam porphyry copper deposits are intruded in the north-western part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the south-eastern extension of the Urumieh-Dukhtar Magmatic Arc (UDMA) in Iran. The porphyritic to microgranular granitoids are mainly consist of quartz diorite, granodiorite and diorite. The whole rock geochemical analyses of these rocks reveals sub-alkaline, calc-alkaline, meta-peraluminous and I-type characteristics. Their geochemical characteristics such as Al2O3 content of 13.51–17.05 wt%, high Sr concentration (mostly >400 ppm), low Yb (an average of 0.74 ppm) and Y (an average of 9.02 ppm) contents, strongly differentiated REE patterns (La/Yb  20), lack of Eu anomaly (Eu/Eu1  1) are indicative of adakitic signature. Their enrichment in low field strength elements (LFSE) and conspicuous negative anomalies for Nb, Ta and Ti are typical of subduction related magmas. Detailed petrological studies and geochemical data indicated that Meiduk and Parkam porphyry granitoids were derived from amphibole fractionation of hydrous melts at a depth of >40 km in a post-collisional tectonic setting.  相似文献   

17.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   

18.
The provenance and tectonic setting of sandstones from the Bombouaka Group of the Voltaian Supergroup, in the northeastern part of Ghana, have been constrained from their petrography and whole-rock geochemistry. Modal analysis carried out by point-counting sandstone samples indicates that they are quartz arenites. The index of compositional variability values and SiO2/Al2O3, Zr/Sc, and Th/Sc values indicates that the sediments are mature. The sandstones are depleted in CaO and Na2O. They are, however, enriched in K2O, Ba, and Rb relative to average Neoproterozoic upper crust. These characteristics reflect intense chemical weathering in the source region as proven by high weathering indices (i.e., CIA, PIA, and CIW). In comparison with average Neoproterozoic upper crust, the sandstones show depletion by transition metals and enrichment by high field strength elements. They generally show chondrite-normalized fractionated light rare-earth element (LREE) patterns (average LaN/SmN = 4.40), negative Eu anomalies (average Eu/Eu* = 0.61), and generally flat heavy rare-earth elements (HREE) (average GdN/YbN = 1.13). The sandstones have La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr, and Eu/Eu* ratios similar to those of sandstones derived from felsic source. Mixing calculations using the rare-earth elements (REE) suggests 48% tonalite–trondhjemite–granodiorite and 52% granite as possible proportions for the source of the sandstones. Both the petrographic and whole-rock geochemical data point to a passive margin setting for the sandstones from the Bombouaka Group.  相似文献   

19.
Three plutons (Deh-Siahan, Bande-Bagh and Baghe-Khoshk Sharghi, collectively referred to as the DBB hereafter) in southwestern Kerman, in the southeastern part of the Urumieh–Dokhtar magmatic assemblage (UDMA) of the Zagros orogenic belt differ from the typical calc-alkaline metaluminous, I-type intrusions of the region. The DBB intrusions have a distinct lithological assemblage varying from diorite through monzogranite and monzonite to alkali feldspar syenite and alkali granite. The DBB granitoids are metaluminous to slightly peraluminous, alkaline to shoshonitic in composition and have high total alkali contents with K2O > Na2O, high FeOT/MgO values, and low CaO and MgO contents. They are enriched in some LILEs (such as Rb and Th) and HFSEs (such as Zr, Y and REEs except Eu) and depleted in Sr and Ba relative to primordial mantle, and have low concentrations of transitional metals. These features along with various geochemical discriminant diagrams suggest that the DBB granitoids are post-collisional A-type granitoids, which had not been recognized previously in the UDMA. The chondrite-normalized REE patterns of the DBB granitoids show slightly enriched light REEs [(La/Sm)N = 2.26–4.13], negative Eu anomalies [(Eu/Eu*)N = 0.19–0.74] and flat heavy REE patterns [(Gd/Yb)N = 0.80–1.87]. The negative Eu anomaly indicates an important role for plagioclase and/or K-feldspar during fractional crystallization. Whole-rock Rb–Sr isotope analysis yields an isochron age of 33 ± 1 Ma with an initial 87Sr/86Sr value of 0.7049 ± 0.0001. Whole-rock Sm–Nd isotope analysis gives εNdt values from + 2.56 to + 3.62 at 33 Ma. The positive εNdt and low ISr values of the DBB granitoids together with their TDM of 0.6–0.7 Ga suggest their formation from partial melting of a lithospheric mantle source, modified by fluids or melts from earlier subduction processes. Melting of lithospheric mantle occurred via a dehydration melting process at pressures below the garnet stability field, as a consequence of lithospheric mantle delamination or break-off of a subducted slab and melting of the lithospheric mantle by upwelling of hot asthenosphere. On the basis of Rb/Sr age dating and the post-collisional geochemical signatures of the DBB granitoids, along with extensive pre-collisional volcanic eruptions in Middle Eocene, we suggest Late Eocene for the time of collision between the Arabian and Central Iranian plates. This also implies that the calc-alkaline I-type intrusions in the southwestern Kerman and in other parts of the UDMA may have formed in a post-collisional context.  相似文献   

20.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号