首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four K-feldspar samples from the Yidun Arc, eastern Tibetan Plateau, were analysed by the 40Ar/39Ar method with the aim of recovering information on their thermal history using multiple diffusion domain (MDD) theory. Arrhenius plots for each of the samples reveal low retentivity early in the heating experiments, a property that is attributed to their recrystallised nature. This low argon retentivity appears to violate the MDD assumption that volume diffusion is the only mechanism for argon transport within the crystals, thus the thermal histories derived from these analyses are considered suspect. Nevertheless, the age spectra themselves suggest that the majority of samples had cooled below 200 °C prior to the Eocene collision of India with Asia. Thermal history modelling from apatite fission track analyses from the same and nearby samples shows slow cooling through the apatite fission track partial annealing zone during the Cenozoic in samples from the high elevation, low relief areas of the Yidun Arc, while samples from the major Jinsha River valley show rapid cooling through the partial annealing zone beginning in the Miocene. These results suggest that significant Cenozoic denudation has been localised and that most parts of the Yidun Arc have experienced very little denudation during the Cenozoic.  相似文献   

2.
Between the Qiangtang Block and Yalung-Zangpo Suture Zone in the south-central Tibetan Plateau, the following geological units and suture zones have been identified from south to north: the Gangdese Granitic Belt, the Lhasa Block, the Nyainqentanghla Shear Zone, the Dangxiong–Sangxiong Tectono-granitic Belt and the Bangong–Nujiang Suture Zone. To better constrain the tectonic evolution and cooling histories of these units, 40Ar/39Ar muscovite, biotite and K-feldspar, as well as apatite fission track dating and thermochronological analysis have been carried out. The analytical results indicate that the south-central Tibetan Plateau, with the exception of the Nyainqentanghla Shear Zone, provides a record of three cooling stages at 165–150, 130–110 and ∼45–35 Ma. Fission-track data modelling also indicates that the stages of cooling were different in the different tectonic belts or blocks. Very different cooling phases occurred in the south-central Tibetan Plateau, compared with southern Tibet, as well as along the Yalung–Zangpo Suture Zone. There is no thermochronological evidence to indicate that the south-central part of Tibetan Plateau was influenced by the underthrusting of Indian Plate.The three-stage cooling history and the stages of tectonic exhumation were controlled completely by the closure of the Bangong–Nujiang Suture Zone along its eastern segment during Middle–Late Jurassic (165–150 Ma) and its western segment in the Early–Late Cretaceous (130–110 Ma), as well as by the collision between the Indian and Asian plates in the Paleogene (45–35 Ma).  相似文献   

3.
40Ar/39Ar data from a profile across the Main Central Thrust in the eastern Bhutan Himalaya indicate muscovite cooling ages of 14.1±0.2 Ma from a sample in the immediate hanging wall of the thrust and 11.2 Ma from about 400 m structurally higher in the hanging wall. These two ages are repeated by two samples from 2.1 and 4.7 km vertical distance from the thrust within the hanging wall, respectively. A single apatite fission track age from the immediate hanging wall of the thrust gives an age of 3.1±0.6 Ma. Pressure–temperature estimates give temperatures around 650°C and 6.5 kbar for the highest sample collected. Samples closer to the Main Central Thrust give also temperatures between 600 and 650°C at the same pressure, indicating possibly a slight temperature decrease with proximity to the thrust. However, uncertainties are large and the parageneses are thermodynamically too highly variant to place much significance on their interpretation.The 40Ar/39Ar cooling age data are consistent with a repetition of the sequence in the hanging wall of the thrust. They confirm the data of Davidson et al. (1997; Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan Crystallines, Bhutan. Journal of Metamorphic Geology 15, 593–612) and are consistent with a more rapid exhumation of deeper levels towards the centre of the High Himalayan Crystalline Complex. Despite the large uncertainties, the PT data shown here are also consistent with this interpretation. The apatite fission track results reveal low-temperature cooling and final exhumation of the Main Central Thrust at the same time as in Nepal.  相似文献   

4.
《地学前缘》2017,(3):94-104
利用镜质体反射率(Ro)和磷灰石裂变径迹(AFT)数据,对四川盆地东部不同地区的古地温梯度、古热流、剥蚀量进行了研究。AFT模拟结果表明,四川盆地东部在晚白垩世早期(100~80 Ma)开始抬升,抬升剥蚀过程具有一定的阶段性且不同地区存在差异:以约30 Ma为界,重庆北碚地区表现为两期冷却,先期冷却缓慢,后期冷却迅速;川东北持续的冷却过程虽有波动但冷却速率差别较小。依据重建的最高古地温剖面恢复了侏罗系顶部不整合面的剥蚀量,川东北普光地区剥蚀量在2.45~2.85km,鄂西渝东地区齐岳山复背斜北部剥蚀量较大,达3.65km,齐岳山复背斜南部剥蚀量2.67km,川东南地区剥蚀量2.05km。研究区的构造热演化表现为既存在抬升剥蚀又存在盆地冷却效应的双重作用:由三叠纪至今,研究区地温梯度和热流持续降低,地温梯度由30~38℃/km降低至20~23℃/km;热流由70~85mW/m2降低至50~55mW/m2。  相似文献   

5.
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) – Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48–40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40–30 Ma in the Tso Morari dome (northern section of the transect) and by 30–20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene.High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10 km) between 20 and 6 Ma, while its southern front reached this depth at 10–5 Ma.  相似文献   

6.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

7.
辽东半岛出露大量片麻状花岗岩,其锆石U-Pb年龄为180~157Ma,该套岩石的最大特点表现在岩石明显经历了早期上盘向NW推覆和后期近EW向伸展作用的韧性改造,然而其变形时代却一直未得到确定。本文以丹东市西南部黑沟二云母二长花岗岩岩体为例,通过激光^40Ar/^39Ar年代学研究探讨该岩体的变形时代。激光^40Ar/^39Ar定年结果表明,黑沟岩体经历的早期推覆、挤压事件发生在~143Ma,而后期地壳伸展作用则发生在121~113Ma,并且该区在早白垩纪期间经历了快速冷却、抬升过程。从而表明在晚侏罗纪-早白垩纪期间(143~113Ma)辽东半岛经历了区域构造体制变革。结合前人大地构造研究成果,本文认为辽东半岛晚侏罗纪-早白垩纪NW向推覆、挤压事件是古太平洋板块向欧亚大陆俯冲作用的结果,而晚期(早白垩纪)的地壳伸展事件是古太平洋板块俯冲作用的转向和变速、华北东部岩石圈较薄以及挤压后地壳松弛等综合作用的结果。  相似文献   

8.
An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between 1000 and 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before 600 Ma as required by the deposition of overlying undeformed Cambrian and/or Ordovician sedimentary rocks.Contribution No. 481 from the Mineralogical Laboratory, University of Michigan  相似文献   

9.
珠江口盆地作为南海北部陆缘典型的裂陷沉积区,是中国最大的中生代海相残留盆地之一,其构造-热演化对南海张开时限及华南构造格局有重要指示作用。在钻孔资料限定和地质格局约束下,文中综合运用磷灰石和锆石裂变径迹对珠江口盆地内钻孔基底花岗质岩石开展了低温热年代学研究,通过径迹年龄分析和径迹长度统计,反演了该区中—新生代基底构造-热演化历史,恢复了珠江口盆地多阶段热运动和基底隆升格局。研究表明,珠江口盆地基底花岗质岩石锆石裂变径迹表观年龄分布于131.7~97.9 Ma,多小于其成岩年龄。样品磷灰石裂变径迹表观年龄多集中在79.7~61.9 Ma,径迹长度变化于11.37~13.16μm,属中等长度,磷灰石裂变径迹多为"冷却"至"混合"类型。珠江口盆地基底热史反演存在明显区域性特点,南(西)部地区抬升记录早,新生代冷却速率相对较低。珠江口盆地基底晚白垩世以来隆升幅度在6km左右,主要发生在晚白垩世、古近纪神狐运动阶段、渐新世珠琼运动Ⅱ幕及南海运动阶段(26 Ma之前)。其中,南海运动表现出东早西晚的特点。基底抬升与盆地形成、红河断裂走滑相耦合。盆地基底的热演化历史为南海的演变历程研究提供了限定条件,是太平洋板块俯冲、印度-欧亚板块碰撞及南海构造运动的综合反映。  相似文献   

10.
西秦岭北缘中生代构造活动的^40Ar/^39Ar、FT热年代学证据   总被引:7,自引:3,他引:7  
钾长石MDD和磷灰石裂变径迹研究表明,西秦岭北缘地区存在2次区域性快速冷却事件,分别为约230~210MaB.P.和约140~120Ma B.P.。约230~210Ma B.P.的快速冷却事件可能反映西秦岭秦岭洋于印支期闭合,发生了大规模的岩浆侵入活动,以及随后造山带迅速褶皱、隆升事件;140~120Ma B.P.的快速冷却事件与西秦岭北缘断裂以北的白垩纪盆地发育的时间一致,可能与西秦岭北缘隆升,同时其以北地区形成巨大的盆地有直接关系。同时,该事件与燕山运动主幕发生的时间一致,说明中燕山期我国东西部广大区域普遍存在一次构造运动。  相似文献   

11.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

12.
胡培远  李才  苏犁  张红雨 《地质通报》2012,31(6):843-851
本松错岩基是羌塘中部规模最大的花岗岩复合岩基,面积超过1800km2,由石炭纪、三叠纪和侏罗纪3个不同时代的花岗岩岩体组成,记录了羌塘中部不同时期的岩浆活动,是研究羌塘盆地构造演化的重要窗口。蜈蚣山花岗岩位于本松错复合岩基北部,前人认为其时代为侏罗纪,但是近期在蜈蚣山地区侏罗纪花岗岩中发现有少量印支期花岗岩出露,岩性主要为花岗片麻岩和二长花岗岩,可能为侏罗纪花岗岩的捕虏体。地球化学研究表明,二长花岗岩属高钾钙碱性过铝质花岗岩,形成于同碰撞环境,与区域内其它印支期中酸性岩浆岩类似,共同构成龙木错-双湖-澜沧江板块缝合带同碰撞—后碰撞岩浆弧。此外还对花岗片麻岩片麻理中的黑云母做了40Ar-39Ar测年,获得了175.8Ma±1.1Ma的定年结果,与其围岩侏罗纪花岗岩年龄相近,推测花岗片麻岩是印支期花岗岩受后期侵入的侏罗纪岩浆改造后的产物,本松错复合岩基应当是中酸性岩浆岩多期侵入的产物。  相似文献   

13.
胡培远  李才  苏犁  张红雨 《地质通报》2012,31(06):843-851
本松错岩基是羌塘中部规模最大的花岗岩复合岩基,面积超过1800km2,由石炭纪、三叠纪和侏罗纪3个不同时代的花岗岩岩体组成,记录了羌塘中部不同时期的岩浆活动,是研究羌塘盆地构造演化的重要窗口。蜈蚣山花岗岩位于本松错复合岩基北部,前人认为其时代为侏罗纪,但是近期在蜈蚣山地区侏罗纪花岗岩中发现有少量印支期花岗岩出露,岩性主要为花岗片麻岩和二长花岗岩,可能为侏罗纪花岗岩的捕虏体。地球化学研究表明,二长花岗岩属高钾钙碱性过铝质花岗岩,形成于同碰撞环境,与区域内其它印支期中酸性岩浆岩类似,共同构成龙木错-双湖-澜沧江板块缝合带同碰撞—后碰撞岩浆弧。此外还对花岗片麻岩片麻理中的黑云母做了40Ar-39Ar测年,获得了175.8Ma±1.1Ma的定年结果,与其围岩侏罗纪花岗岩年龄相近,推测花岗片麻岩是印支期花岗岩受后期侵入的侏罗纪岩浆改造后的产物,本松错复合岩基应当是中酸性岩浆岩多期侵入的产物。  相似文献   

14.
天水盆地位于青藏高原东北缘六盘山与西秦岭二重要构造带交汇处,该盆地充填较完整晚新生代沉积序列记录着该区构造变形历史,因此对该盆地沉积记录的研究对探讨青藏高原东北缘晚新生代构造活动事件具有重要的意义。通过对天水盆地晚新生代砂岩和含砾砂岩地层中碎屑颗粒磷灰石裂变径迹热年代学研究,推断23.7Ma左右天水盆地北部沉积物源区西秦岭发生了一次与青藏高原隆升有关的构造—热事件,该事件可能导致天水盆地的形成,并开始接受新近系冲积相沉积。约14.1Ma左右天水盆地物源区再次发生构造活动,使西秦岭剥露速率加快和盆地进一步拗陷广泛接受河湖相沉积。通过对剥蚀速率的估算,得出天水盆地沉积记录的23.7Ma和14.1Ma西秦岭北部快速抬升事件的平均剥蚀速率分别达0.34mm/a和1.05mm/a。   相似文献   

15.
张修政  董永胜  李才  陈文  施建荣  张彦  王生云 《地质通报》2010,29(12):1815-1824
羌塘中部高压变质带由榴辉岩、石榴子石白云母片岩、蓝片岩等组成,与蛇绿混杂岩、晚古生代浅变质地层岩片等共同构成了龙木错-双湖板块缝合带这一构造混杂岩带。目前已先后在片石山地区、果干加年山地区和冈玛错地区发现典型的榴辉岩,以片石山和果干加年山地区的榴辉岩为研究对象。片石山地区的榴辉岩为低温型榴辉岩,围岩为石榴子石白云母片岩,变质作用峰期温压条件为T=500℃,p=2.3GPa。已获得230~244Ma锆石SHRIMP U-Pb年龄和石榴子石Lu-Hf等时线年龄,代表榴辉岩相变质作用的时代。榴辉岩及其围岩在误差范围内具有相同的Ar-Ar年龄,为210~220Ma,代表了榴辉岩及其围岩冷却抬升至近地表的时代。果干加年山地区的榴辉岩具有和片山地区榴辉岩相似的野外产状、矿物组合、温压条件和围岩。Ar-Ar年代学研究显示,果干加年山地区的榴辉岩在240Ma左右即已折返并抬升至近地表,其变质作用峰期时代明显要早于片石山地区。  相似文献   

16.
The northern Tibetan Plateau has evolved a unique basin-range structure characterized by alternating elongated mountain ranges and basins over a history of multiple tectonic and fault activities. The Subei basin recorded evolution of this basin-range structure. In this study, detailed detrital apatite fission track (AFT) thermochronological studies in conjunction with previously documented data reveal provenance of the Subei basin, important information about the Indo-Eurasia collision, and two Miocene uplift and exhumation events of the northern Tibetan Plateau. Detrital AFT analyses combined with sedimentary evidences demonstrate that the Danghenanshan Mountains is the major provenance of the Subei basin. In addition, very old age peaks indicate that part sediments in the Subei basin are recycling sediments. Age peak populations of 70–44 Ma and 61–45 Ma from the lower and upper Baiyanghe formations record the tectono-thermal response to the Indo-Eurasia collision. Combined detrital AFT thermochronology, magnetostratigraphy and petrography results demonstrate the middle Miocene uplift and exhumation event initiated 14–12 Ma in the Subei basin, which may resulted from the Miocene east-west extension of the Tibetan Plateau. Another stronger uplift and exhumation event occurred in the late Miocene resulted from strengthened tectonic movement and climate. A much younger AFT grain age, breccia of diluvial facies and boulders of root fan subfacies record the late Miocene unroofing in the Danghenanshan Mountains.  相似文献   

17.
西藏多不杂斑岩铜金矿是在班公湖—怒江成矿带发现的第一个斑岩型矿床。通过对多不杂矿床蚀变钾长石进行40Ar/39Ar年代学测试获得,蚀变钾长石的坪年龄为(118.31±0.60)Ma,反等时线年龄为(118.30±0.79)Ma,它们代表多不杂矿床钾化蚀变的年龄为119~118 Ma,与成矿年龄同期。多不杂矿床形成的岩浆-热液过程为,由岩浆期(约120Ma)演化至钾化和成矿期(119~118 Ma),再演化至绢英岩化期(118~115 Ma)。  相似文献   

18.
This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains.  相似文献   

19.
Summary The Cretaceous Eclogite-Gneiss unit and its tectonic overburden (Micaschist, Phyllite and Lower Magdalensberg units) and the underlying Preims subunit of the Saualpe, Eastern Alps, have been investigated in order to constrain the mode of exhumation of the type locality of eclogites. 40Ar/39Ar ages of white mica from the eclogite-bearing unit suggest rapid, uniform cooling and exhumation between 86 and 78 Ma (Santonian-Campanian). Overlying units show upwards increasingly older ages with an age of 261.7 ± 1.4 Ma in the uppermost, low-grade metamorphic unit (Lower Magdalensberg unit). We consider this Permian age as geologically significant and to record a Permian tectonic event. Rocks of phyllite and micaschist units along western margins of the Saualpe block yield amphibole and white mica ages ranging from 123 to 130 Ma. These are considered to closely date the age of nappe stacking, whereas a single biotite age of 66–68 Ma from a shear zone is interpreted to date retrogression during normal faulting. Biotite and amphibole of Micaschist and Eclogite-Gneiss units show variable contents of extraneous argon. Consequently, their ages are in part geologically meaningless whereas other samples yield meaningful ages. The white mica ages from the Eclogite-Gneiss unit range from 78 to 85 Ma and argue for cooling through ca. 400 °C during the time as the westerly adjacent Upper Cretaceous Krappfeld collapse basin formed. The Preims subunit with paragneiss and marbles is considered to represent a large synmetamorphic shear zone at the base of the overthrusting Eclogite-Gneiss unit. The unit comprises a flat-lying foliation and a SE-trending lineation. This zone is interpreted to represent a zone of top-NW thrusting. A major ductile low-angle normal fault with top to ESE shear has been detected between the Eclogite-Gneiss and overlying units, and between the Micaschist and Phyllite units. The ductile thrust at the base and the low-angle normal fault at the top are considered to confine a NW-ward extruding high-pressure wedge. The new observations argue for rapid exhumation of a subducted high-pressure wedge within a subduction channel. Rapid surface erosion of the exhuming wedge might have facilitated exhumation. Eroded sedimentary rocks are preserved within adjacent Gosau basins, although only pebbles of low-grade metamorphic rocks of the uppermost tectonic unit can be found in these basins.  相似文献   

20.
翟雷  叶会寿  周珂  孟芳  高亚龙 《地质通报》2012,31(4):569-576
河南嵩县庙岭金矿位于华北陆块南缘熊耳山—外方山地区。矿床赋存于中元古界熊耳群火山岩中近南北向断裂带内,矿体呈似层状、透镜状产出,矿石具浸染状、细网脉状构造和微细粒它形粒状晶粒结构、交代结构,围岩热液蚀变有硅化、钾长石化、绢云母化、黄铁矿化等,矿化具有多阶段的特点,属破碎带蚀变岩型金矿。成矿热液蚀变矿物钾长石Ar-Ar法测年的结果:坪年龄为121.6Ma±1.2Ma,等时线年龄为117.0Ma±1.6Ma,表明矿床形成于早白垩世,与熊耳山地区祁雨沟、瑶沟等金矿床形成于同一时期,属与早白垩世构造-岩浆-流体活动有关的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号