首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张鹏  李士进  叶健  王志坚 《湖泊科学》2004,16(Z1):105-110
作为数字地球的有机组成部分,数字流域是一个异构的、分布式的巨型信息系统.数据集成与信息共享是数字流域的基本要求和技术难点.没有良好的数据集成与共享机制,各地区、各部门的数字流域建设只能停留于"信息孤岛"的水平,不能充分发挥数字化建设的整体效益.本文提出了基于XML技术的三层架构解决数字流域数据集成与共享问题,即应用层,中间层和XML包装器.其中,应用层向中间层发出数据请求,按给定协议接受并处理来自中间层的XML文档;XML包装器是各种异构数据的提供者,中间层是连接应用层和XML包装器(wrapper)的桥梁.文章最后结合我国水资源和防洪管理模式,给出了符合我国实际的一个数字流域数据集成与共享实现框架.  相似文献   

2.
《Journal of Geodynamics》2006,41(4-5):436-449
In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.  相似文献   

3.
The differences between the new International Earth Rotation Service (IERS) 2000 and the previous IERS1996 sub-daily Earth rotation parameters (ERP) models can reach 0.1 mas (0.001 arc sec) and 0.1 mas/day. The largest differences are seen for the aliasing periods of 14.2 and 360 days, which correspond to the diurnal tidal waves of O1 and (K1, P1), respectively. Precise independent polar motion (PM) rate solutions effectively doubles the sampling rate and allows for effective testing of sub-daily ERP models and other periodical effects at the diurnal and semi-diurnal frequency bands. Since November 12, 2000, when the Jet Propulsion Laboratory (JPL) Analysis Center of International GPS Service (IGS) has switched to the conventional IERS1996 sub-daily ERP model, from the older model of Herring and Dog (1994), the JPL daily PM rate solutions show no, or greatly reduced 14.2 day amplitude (O1) peaks. This confirmed that the anomalistic amplitudes at 14.2 day period seen for JPL PM solutions prior November 12, 2000 was largely due to the effects of the older sub-daily ERP model on independent PM rate solutions. As indicated by the latest IGS PM rate solutions, which were corrected for the IERS1996 and 2000 model differences, the new IERS2000 sub-daily ERP model is expected to perform equally well as the conventional IERS1996 model.  相似文献   

4.
The International Laser Ranging Service (ILRS) was established in September 1998 as a service within the IAG to support programs in geodetic, geophysical, and lunar research activities and to provide data products to the International Earth Rotation Service (IERS) in support of its prime objectives. Now in operation for 5 years, the ILRS develops: (1) the standards and specifications necessary for product consistency and (2) the priorities and tracking strategies required to maximize network efficiency. The service collects, merges, analyzes, archives and distributes satellite and lunar laser ranging data to satisfy a variety of scientific, engineering, and operational needs and encourages the application of new technologies to enhance the quality, quantity, and cost effectiveness of its data products. The ILRS works with: (1) the global network to improve station performance; (2) new satellite missions in the design and building of retroreflector targets to maximize data quality and quantity and (3) science programs to optimize scientific data yield. The ILRS Central Bureau maintains a comprehensive web site as the primary vehicle for the distribution of information within the ILRS community. The site, which can be accessed at: http://ilrs.gsfc.nasa.gov is also available at mirrored sites at the Communications Research Laboratory (CRL) in Tokyo and the European Data Center (EDC) in Munich.During the last 2 years, the ILRS has addressed very important challenges: (1) data from the field stations are now submitted hourly and made available immediately through the data centers for access by the user community; (2) tracking on low satellites has been significantly improved through the sub-daily issue of predictions, drag functions, and the real-time exchange of time biases; (3) analysis products are now submitted in SINEX format for compatibility with the other space geodesy techniques; (4) the Analysis Working Group is heavily engaged in Pilot Projects as it works toward an ILRS “standard” global solution and (5) SLR has significantly increased its participation in the International Terrestrial Reference Frame (ITRF) activity, which is important to the success of IGGOS.  相似文献   

5.
对于大地测量应用来说,目前IERS机构在定义地球参考系时推荐采用岩石圈无整体旋转(No-Net-Rotation-NNR)约束条件,然而对于地球物理应用来说,相对于NNR参考基准的绝对板块运动数据可能会对地幔对流等研究结果产生误导.考虑到热点的运动,提出建立平均热点(MHS-Medial HotSpot)参考基准的方法,给出建立该基准的约束准则,分别以地学模型NNR-NUVEL1A和实测模型ITRF2005VEL为基础,建立了平均热点参考基准MHS-NUVEL1A和MHS-ITRF2005,并与其它基于热点的绝对板块运动模型进行了比较和分析;讨论了岩石圈的西向漂移,给出了岩石圈相对于下地幔整体旋转的更精确的定量估计,即基于实测的热点参考架MHS-ITRF2005和地学模型NNR-NUVEL1A之间的整体旋转为0.26°/Ma,旋转极在(50°S, 62°E),这与由板块的受力模型给出的岩石圈的整体旋转的旋转极很接近,旋转速率大致快了10%.  相似文献   

6.
A problem related to the statistics of geomagnetic data is solved. A coordinate system on the Earth’s spherical surface is constructed. First coordinate P is calculated from the density function of paleomagnetic data on the Earth’s surface; this function is not assumed to be constant. The second coordinate is well defined for an arbitrary regular P coordinate and parametrizes a collection of components of the level curve of the first coordinate. A coordinate system is explicitly introduced and allows one to test 2D paleomagnetic data. In the solution topology and singularity theory are used.  相似文献   

7.
本文主要介绍了地球物理场流动观测数据管理系统的主要功能和关键技术。本系统主要功能包括流动地磁观测基础信息管理、数据入库、数据目录总览、数据浏览及备份、备份数据入库、数据库检查等。通过本系统的数据备份和备份数据入库功能,可按观测任务期次进行数据备份,并较好地解决了单位间的数据交换问题。数据目录让用户和管理者能够一目了然地了解库里的数据内容。数据库检查则可以定期对数据的正确性和一致性进行检查,以清除数据垃圾,保持数据库的健康性。  相似文献   

8.
《Journal of Geodynamics》2006,41(4-5):414-431
Towards the end of the 19th century, geodetic observation techniques allowed it to create geodetic networks of continental size. The insight that big networks can only be set up through international collaboration led to the establishment of an international collaboration called “Central European Arc Measurement”, the predecessor of the International Association of Geodesy (IAG), in 1864. The scope of IAG activities was extended already in the 19th century to include gravity.At the same time, astrometric observations could be made with an accuracy of a few tenths of an arcsecond. The accuracy stayed roughly on this level, till the space age opened the door for milliarcsecond (mas) astrometry. Astrometric observations allowed it at the end of the 19th century to prove the existence of polar motion. The insight that polar motion is almost unpredictable led to the establishment of the International Latitude Service (ILS) in 1899.The IAG and the ILS were the tools (a) to establish and maintain the terrestrial and the celestial reference systems, including the transformation parameters between the two systems, and (b) to determine the Earth's gravity field.Satellite-geodetic techniques and astrometric radio-interferometric techniques revolutionized geodesy in the second half of the 20th century. Satellite Laser Ranging (SLR) and methods based on the interferometric exploitation of microwave signals (stemming from Quasars and/or from satellites) allow it to realize the celestial reference frame with (sub-)mas accuracy, the global terrestrial reference frame with (sub-)cm accuracy, and to monitor the transformation between the systems with a high time resolution and (sub-)mas accuracy. This development led to the replacement of the ILS through the IERS, the International Earth Rotation Service in 1989.In the pre-space era, the Earth's gravity field could “only” be established by terrestrial methods. The determination of the Earth's gravitational field was revolutionized twice in the space era, first by observing geodetic satellites with optical, Laser, and Doppler techniques, secondly by implementing a continuous tracking with spaceborne GPS receivers in connection with satellite gradiometry. The sequence of the satellite gravity missions CHAMP, GRACE, and GOCE allow it to name the first decade of the 21st century the “decade of gravity field determination”.The techniques to establish and monitor the geometric and gravimetric reference frames are about to reach a mature state and will be the prevailing geodetic tools of the following decades. It is our duty to work in the spirit of our forefathers by creating similarly stable organizations within IAG with the declared goal to produce the geometric and gravimetric reference frames (including their time evolution) with the best available techniques and to make accurate and consistent products available to wider Earth sciences community as a basis for meaningful research in global change. IGGOS, the Integrated Global Geodetic Observing System, is IAG's attempt to achieve these goals. It is based on the well-functioning and well-established network of IAG services.  相似文献   

9.
We are developing simulation and analysis tools in order to develop a solid Earth Science framework for understanding and studying active tectonic and earthquake processes. The goal of QuakeSim and its extension, the Solid Earth Research Virtual Observatory (SERVO), is to study the physics of earthquakes using state-of-the-art modeling, data manipulation, and pattern recognition technologies. We are developing clearly defined accessible data formats and code protocols as inputs to simulations, which are adapted to high-performance computers. The solid Earth system is extremely complex and nonlinear, resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes. We are using Web (Grid) service technology to demonstrate the assimilation of multiple distributed data sources (a typical data grid problem) into a major parallel high-performance computing earthquake forecasting code. Such a linkage of Geoinformatics with Geocomplexity demonstrates the value of the Solid Earth Research Virtual Observatory (SERVO) Grid concept, and advances Grid technology by building the first real-time large-scale data assimilation grid.  相似文献   

10.
Towards the end of the 19th century, geodetic observation techniques allowed it to create geodetic networks of continental size. The insight that big networks can only be set up through international collaboration led to the establishment of an international collaboration called “Central European Arc Measurement”, the predecessor of the International Association of Geodesy (IAG), in 1864. The scope of IAG activities was extended already in the 19th century to include gravity.At the same time, astrometric observations could be made with an accuracy of a few tenths of an arcsecond. The accuracy stayed roughly on this level, till the space age opened the door for milliarcsecond (mas) astrometry. Astrometric observations allowed it at the end of the 19th century to prove the existence of polar motion. The insight that polar motion is almost unpredictable led to the establishment of the International Latitude Service (ILS) in 1899.The IAG and the ILS were the tools (a) to establish and maintain the terrestrial and the celestial reference systems, including the transformation parameters between the two systems, and (b) to determine the Earth's gravity field.Satellite-geodetic techniques and astrometric radio-interferometric techniques revolutionized geodesy in the second half of the 20th century. Satellite Laser Ranging (SLR) and methods based on the interferometric exploitation of microwave signals (stemming from Quasars and/or from satellites) allow it to realize the celestial reference frame with (sub-)mas accuracy, the global terrestrial reference frame with (sub-)cm accuracy, and to monitor the transformation between the systems with a high time resolution and (sub-)mas accuracy. This development led to the replacement of the ILS through the IERS, the International Earth Rotation Service in 1989.In the pre-space era, the Earth's gravity field could “only” be established by terrestrial methods. The determination of the Earth's gravitational field was revolutionized twice in the space era, first by observing geodetic satellites with optical, Laser, and Doppler techniques, secondly by implementing a continuous tracking with spaceborne GPS receivers in connection with satellite gradiometry. The sequence of the satellite gravity missions CHAMP, GRACE, and GOCE allow it to name the first decade of the 21st century the “decade of gravity field determination”.The techniques to establish and monitor the geometric and gravimetric reference frames are about to reach a mature state and will be the prevailing geodetic tools of the following decades. It is our duty to work in the spirit of our forefathers by creating similarly stable organizations within IAG with the declared goal to produce the geometric and gravimetric reference frames (including their time evolution) with the best available techniques and to make accurate and consistent products available to wider Earth sciences community as a basis for meaningful research in global change. IGGOS, the Integrated Global Geodetic Observing System, is IAG's attempt to achieve these goals. It is based on the well-functioning and well-established network of IAG services.  相似文献   

11.
Described is a method for non-regular combination of different techniques, where the normal equations matrix cannot be restored, to obtain a representative set of Earth orientation parameters and station coordinates. The method is based on combining station position vectors transformed to the celestial reference frame, where they are functions of both the EOP and the station coordinates. Three types of constraints are applied to stabilize the system, separate celestial pole offset from polar motion and, to tie the EOP between individual epochs. VLBI, GPS, SLR and Doris data as collected for the ‘IERS SINEX Combination Campaign’ was used to check the method. After combination, dispersion of station coordinates decreased from 0.040 to 0.031 m. The effect of the combination on EOP is of the order of 0.2 mas and it can be seen in Figs. 3 and 4 as a difference of the final and a priori values.  相似文献   

12.
In the last few decades, satellites have acquired various potential data sets hundreds of kilometers above the Earth’s surface. Conventionally, these global magnetic and gravitational data sets are approximated by using spherical harmonics that allow straightforward work with both fields outside the Earth’s mass. In this article, we present an alternative approach for working with potential data in mass-free space given over a regular coordinate grid on a spherical surface. The algorithm is based on an iterative scheme and the Poisson integral equation for the sphere. With help from the Fourier transform, global potential (magnetic or gravitational) data can efficiently be continued from a mean orbital sphere down to a reference surface without using the spherical harmonics. This is illustrated both with simulated magnetic field data and with real data from the satellite gradiometry mission GOCE. In the case of simulated magnetic data and the downward continuation for 450 km, we have achieved a root mean square at the level of 0.05 nT, while it was <1 E (eotvos) for real GOCE data continued for 250 km. The crucial point is to apply the algorithm twice as a large part of noise can be removed from the input data.  相似文献   

13.
The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.  相似文献   

14.
The newest observational evidence on asymmetrical deformation of the Earth   总被引:3,自引:0,他引:3  
IntroductionWhat is the shape of the Earth? Does it change continuously? It is a scientific question since the ancient times and is still being observed and explored at present. In 250 BC, Greek scholar Eratosthene supposed the shape of the Earth to be spherical according to the observations to the Sun and estimated the perimeter of the Earth to be 4 000 km (King-Hele, 1976) according to the camel-walking distance. Until the 16th century, the Earth was considered to be a very symmetrical …  相似文献   

15.
通过对Melchior P.潮汐与章动理论的改进,给出了高阶日月引潮力位引起的岁差章动力矩,建立了刚体地球极移和章动的联合动力学方程,由此对天球中间极(CIP)进行了严格的理论定义. 在各阶潮汐力矩的作用下,得到CIP轴岁差章动的表达式. 通过推导发现,奇数阶引潮力位产生的岁差章动力矩使得黄经章动和交角章动出现了异向项(即:黄经章动出现了cos项,交角章动出现了sin项). 最后利用郗钦文精密引潮力位展开,建立了737项刚体地球章动序列. 新的章动序列是IERS2003采用的刚体地球章动序列REN2000(包含678个日月章动项)的一个补充.  相似文献   

16.
基于GIS的地质数据库系统:研究现状和发展趋势   总被引:31,自引:5,他引:31  
有效地存储、管理、交流、进而充分利用正日益增多的地质资料和数据,离不开功能强大的数据库管理系统,然而,地学数据显著的空间特征和复杂的结构属性又不能简单运用常规的数据库管理系统进行表述、处理,地理信息系统(GIS)技术,以其对空间数据强大的储存查询和分析处理功能而鲜明地区 地普通管理信息系统,正适合于对复杂的地球空间数据进行采集、储存、分类、检索查询、刻划表达、以及分析建模,因此,先进的GIS技术与强大的地质数据库系统相结合,亦即是,基于GIS的地质数据库系统的开发和应用,是计算机技术应用于地学研究的发展方向和应用趋势,是当今地学发展所必需的基础技术之一,本文结合我们的近期工作概述了这一新兴领域的研究现状和发展趋势。  相似文献   

17.
Recent developments in remote sensing (RS) technologies lead the way in characterizing river morphology at regional scales and inferring potential channel responses to human pressures. In this paper, a unique regional database of continuous hydromorphological variables (HyMo DB) based on areal and topographic data has been generated from RS analysis. Key riverscape units with specific geomorphic meaning have been automatically mapped for 1700 km2 of river floodplains from simultaneous very‐high‐resolution (VHR) near‐infrared aerial imagery and low‐resolution LiDAR‐derived products. A multi‐level, geographical object‐based architecture (GEOBIA) was employed to integrate both spectral and topographic information and generate a regional classifier able to automatically map heterogeneous fluvial patterns in different geographical and topographical contexts of the Piedmont Region (Italy). This HyMo‐generated DB offers a unique set of tools for hydromorphologists and can be exploited for different purposes. For the first time, topographic information can be exploited regionally per riverscape unit class, allowing for quantitative analysis of their regional spatial and statistical variability. In this manner, river types can be automatically characterized and classified using objective and repeatable hydromorphological variables. We discuss the potential of quantifying functional links between riverscape units and their driving processes, a valuable source of information to start assessing and highlighting the entity of potential channel adjustments at the regional scale to human pressures. The HyMo DB can also be integrated with historical, field‐based information to better comprehend current fluvial changes at a local scale. In view of future RS acquisitions, the present approach will result in a suitable procedure for quantitative, objective and continuous monitoring of river evolutions over large scales. This type of hydromorphological characterization will allow regional trends and patterns to be highlighted through time and river management strategies to thus be implemented at both regional and local scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Integrated Global Geodetic Observing System (IGGOS)—science rationale   总被引:1,自引:0,他引:1  
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

20.
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号