首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Palaeobotany of Gondwana basins of Orissa State, India: A bird's eye view   总被引:1,自引:0,他引:1  
Gondwana basins of Orissa State constitute a major part of the Mahanadi Master Basin. These Gondwana sediments, ranging from Asselian to Albian in age, contain remnants of three basic floral assemblages i.e. Glossopteris Assemblage, Dicroidium Assemblage and Ptilophyllum Assemblage which can be recognized through the Permian, Triassic and Early Cretaceous, respectively. The megafloral assemblages of different basins of this state are discussed briefly. This report mainly deals with the plant species diversification in different lithological formations and the development of flora in the Gondwana basins of Orissa. A number of successive megafloras are recognized. Among those, leaves are the dominant part of the preserved flora, followed by fruits and roots. No wood parts are preserved in the major basins. These pre-angiospermic floras have been systematically analyzed to depict the evolutionary trends, and palaeofloristics of these basins. The distribution of plant fossils in different formations of these basins depicts provincialism in Gondwana flora within the Orissa.  相似文献   

2.
The Gondwana successions (1–4 km thick) of peninsular India accumulated in a number of discrete basins during Permo-Triassic period. The basins are typically bounded by faults that developed along Precambrian lineaments during deposition, as well as affected by intrabasinal faults indicating fault-controlled synsedimentary subsidence. The patterns of the intrabasinal faults and their relationships with the respective basin-bounding faults represent both extensional and strike-slip regimes. Field evidence suggests that preferential subsidence in locales of differently oriented discontinuities in the Precambrian basement led to development of Gondwana basins with varying, but mutually compatible, kinematics during a bulk motion, grossly along the present-day E–W direction. The kinematic disparity of the individual basins resulted due to different relative orientations of the basement discontinuities and is illustrated with the help of a simple sandbox model. The regional E–W motion was accommodated by strike-slip motion on the transcontinental fault in the north.  相似文献   

3.
The Ib-River Coalfield in Orissa State is a part of Mahanadi Master Basin. Recent extensive investigations were conducted in this Coalfield to locate fossiliferous beds in the Lower Gondwana deposits and as a result a large cache of plant fossils were recovered from Lower Permian sediments (Barakar Formation) exposed in Jurabaga and Lajkura Collieries. The complete flora includes 23 genera representing nine orders viz., Lycopodiales, Equisetales, Sphenophyllales, Filicales, Cordaitales, Coniferales, Ginkgoales, Cycadales and Glossopteridales. Only the Cordaitales, represented by four genera i.e., Noeggerathiopsis, Cordaites, Euryphyllum and Kawizophyllum are discussed in this paper. Cordaitalean leaves are described for the first time from this coalfield; the remaining plant groups will be considered in a subsequent publication. Cordaitalean leaves attributable to Noeggerathiopsis hislopii, Noeggerathiopsis minor, Euryphyllum whittianum, Euryphyllum maithyi, Kawizophyllum dunpathriensis and Cordaites sp. constitute about 13.90% (111 specimens) of the total plant assemblage collected from this Coalfield. Of the cordaitaleans, N. hislopii is most abundant (47.75%; 53 specimens) followed by E. whittianum (40.54%; 45 specimens). A summary of the distribution of Cordaitales throughout the Indian Gondwana is also presented. Floristic composition varies stratigraphically at the two Barakar exposures (Lajkura and Jurabaga Collieries). Cordaitales are preserved only in the lowermost (4th) horizon (lower floral zone). Strata in these collieries have been assigned to the lower and upper Barakar Formation based on floristic content and an Early Permian (Artinskian) age is assigned.  相似文献   

4.
In peninsular India, Gondwana strata are disposed linearly as strings of isolated basins conforming to the trend of the present day Koel–Damodar, Son–Mahanadi and Prahnita–Godavari river valleys. There are seven exposed and one concealed Gondwana basins/outliers in Orissa belonging to the Son–Mahanadi valley system. The present study is concerned with the consanguinity of the Talchir and Ong-river basins of Orissa. Similarity and dissimilarity of palaeocurrent population in these two basins were taken into consideration to test the consanguinity of the basins under consideration. Statistical analysis suggests that the sampled palaeocurrent data of the same formation belong to the same population when considered for both basins. In geologic terms, the basin parameters were identical when considered for either the Talchir or the Karharbari Formation that proves the consanguinity of both the basins and the possible existence of a master basin that encompassed other sister Gondwana basins in Orissa.  相似文献   

5.
Trace element chemistry of major rivers in Orissa State, India   总被引:1,自引:1,他引:1  
 Geochemical analyses of surface waters from rivers flowing through Orissa State, India, indicated that trace element concentrations were extremely variable and consistently higher than world river average. The Brahmani River was the most solute-rich river studied, followed by the Baitarani and Mahanadi Rivers. Although all three rivers drain similar geology, the Brahmani River catchment is heavily industrialized, and water samples collected upstream and downstream from industries indicated that anthropogenic activity directly influenced its chemical composition. Samples collected from several towns, in all three river systems, did not invariably show similar patterns, with various elements having higher dissolved concentrations upstream. Because the concentration of total solids increased downstream, this implied that some components of the sewage had effectively sequestered available elements from solution and converted them to particulate material. Although the impact of pollution is clearly recognizable in water samples collected in proximity to the anthropogenic source, there are only slight elemental accumulations in the lower reaches of the Mahanadi River, with no accumulation in the Brahmani River. Apparently for these large rivers, discharged effluent becomes rapidly diluted, while complexation and sedimentation further removes trace elements from the water column. However, in the less voluminous Baitarani River, elementar enrichment near the river's mouth suggests that in this secondary river, where dilution effects are less, the concerns over regional water quality may be more prevalent. Received: 1 April 1995 · Accepted: 30 August 1995  相似文献   

6.
The Athgarh Formation is the northernmost extension of the east coast Upper Gondwana sediments of Peninsular India. The formation of the present area is a clastic succession of 700 m thick and was built against an upland scarp along the north and northwestern boundary of the basin marked by an E-W-ENE-WSW boundary fault. A regular variation in the dominant facies types and association of lithofacies from the basin margin to the basin centre reveals deposition of the succession in an alluvial fan environment with the development of proximal, mid and distal fan subenvironments with the distal part of the fan merging into a lake. Several fans coalesced along the basin margin, forming a southeasterly sloping, broad and extensive alluvial plain terminating to a lake in the centre of the basin. Aggradation of fans along the subsiding margin of the basin resulted in the Athgarh succession showing remarkable lateral facies change in the down-dip direction. The proximal fan conglomerates pass into the sandstone-dominated mid-fan deposits, which, in turn, grade into the cyclic sequences of sandstone-mudstone of the distal fan origin. Further downslope, thick sequence of lacustrine shales occur. The faulted boundary condition of the basin and a thick pile of lacustrine sediments at the centre of the basin suggest that tectonism both in the source area and depositional site has played an important role throughout the deposition of the Athgarh succession of the present area. The vertical succession fines upward with the coarse proximal deposits at the base and fine distal deposits at the top, suggesting deposition of the succession during progressive reduction of the source area relief after a single rapid uplift related to a boundary fault movement.The NW-SE trending fault defining the Son-Mahanadi basin of Lower Gondwana sediments are shear zones of great antiquity and these were rejuvenated under neo-tensional stress during Lower Gondwana sedimentation. The E-W-ENE-WSW trending fault of the Athgarh basin, on the other hand, define tensional rupture of much younger date. In the Early Cretaceous period, there was a reversal of palaeoslope in the Athgarh basin (southward slope) with respect to the Son-Mahanadi basin (northward slope). During the phase drifting of the Indian continent and with the evolution of Indian Ocean in the Early Cretaceous period, the tectonic events in the plate interior was manifested by formation of new grabens like the Athgarh graben.  相似文献   

7.
Cyclic characters of Karharbari, Barakar and Barren Measures Formations of the Talchir Gondwana basin have been studied in the subsurface logs statistically using first order Markov chain and entropy analyses. Results strongly suggest that the sediments of these formations were deposited by Markovian mechanism and all the three formations represent cyclic sedimentation. The complete cycles of all the three formations are identical and exhibit fining-upward character. Each complete cycle starts with a thin conglomerate or pebbly to coarse-grained sandstone at the base and successively followed by medium- and fine-grained sandstones, interbedded sandstone-shale, shale and terminates with a coal seam at the top. There are, however, minor variations of facies transition in different formations. Entropy analysis also corroborates these findings. The upward sequence of facies states, which is stationary at individual localities, is non-stationary over the entire area. Broad regional variations in the depositional environment, that are not significant at the local scale, may be the plausible explanation. The Karharbari, Barakar and Barren Measures sediments of the Talchir Gondwana basin fit suitably into the concept of fluvial cycles.  相似文献   

8.
The Athgarh Sandstone (Upper Gondwana) of Jurassic age exposed in Orissa on the southeastern margin of India comprises almost horizontal medium- to coarse-grained pebbly sandstone interbedded with thin layers of white clay and carbonaceous shale. The cross-bedded sandstone beds within the formation display tabular cross-bedding, having an average thickness of 30 cm and average inclination of 13°. The mean foreset azimuth is 128° (nearly southeast). A total of 537 measurements of cross-beddings from 28 localities, over an area of 500 sq.km, were taken.The study of cross-bed data indicates transportation of sediments by water currents flowing in a southeasterly direction during the deposition of the Athgarh Sandstone. The mean azimuth, thickness and inclination of the cross-beds and sample variance of the area indicate a fluviatile environment of deposition. The dispersal pattern of the currents in the southeastern part of the area suggests proximity to the shore line.  相似文献   

9.
The Permo-Carboniferous Talchir Formation in the southeastern part of the Talchir basin is represented by about 260 m thick clastic succession resting on the Precambrian basement rocks of the Eastern Ghats Group. The succession is tentatively subdivided into four lithostratigraphic units, namely A-I, A-II, B and C from base to top. Unit A-I comprises mud-matrixed, very poorly sorted diamictites and interbedded thin sandstone and mudstone yielding dropstones. They reveal deposition in a proglacial lake environment in which ice rafting and suspension sedimentation, as well as meltwater-underflow processes, produced variety of facies. The succession of unit A-II is dominated by pebble to boulder conglomerates and sandstones. They were deposited mostly from various kinds of high-energy sediment gravity flows, both subaerial and subaqueous, and formed steep-faced fan-delta on the margin of the basin. Unit B demonstrates turbidite sedimentation in lake-margin slope and base-of-slope environments, in which a sublacustrine channel-fan system developed. The lake-margin slope was dissected by channels which were accompanied by overbank and levee deposits. Sediments delivered from the mouth of a channel were deposited at the base-of-slope, forming a fan lobe which prograded onto the lake basin floor. Unit C dominantly consists of mudstone with intercalations of siltstone and sandstone and forms a large-scale coarsening-upward deltaic sequence eventually covered by the fluvial deposits of the Karharbari Formation.Following the glacially influenced sedimentation, the Talchir succession shows a vertical facies progression suggesting gradual deepening of the lake basin and eventual filling up of it due to rapid delta progradation. Such a succession represents deglacial control on basin evolution during the Talchir time. In the initial stage of glacial recession, collapse of a glacier and failure of montane glacial lakes frequently occurred and gave rise to generation of a highly sediment-laden debris flow and a catastrophic flood, which brought abundant coarse clastics into the lake and built a fan-delta on the basin margin. The continued recession and disappearance of glacier resulted in abundant supply of ice-melt water into the graben as well as eustatic sea-level rise, being the cause of the rise in lake-level. Subsequent rapid delta progradation and eventual filling-up of the lake basin suggest rapid lake-level fall after deepening of lake basin. It was possibly caused by the regional uplift due to post-glacial isostatic rebound. Rapid draining of lake water through the graben gave rise to the establishment of an axial drainage system which rapidly filled the lake basin in form of an axially fed delta.  相似文献   

10.
Integrated biostratigraphic studies are undertaken on the newly discovered Gondwana successions of Purnea Basin which have been recognized in the subsurface below the Neogene Siwalik sediments. The four exploratory wells, so far drilled in Purnea Basin, indicated the presence of thick Gondwana sussession (± 2450m) with varied lithological features. However, precise age of different Gondwanic lithounits of this basin and their correlation with standard Gondwana lithounits is poorly understood due to inadequate biostratigraphic data.Present biostratigraphic studies on the Gondwana successions in the exploratory wells of PRN-A, RSG-A, LHL-A and KRD-A enable recognition of fifteen Gondwanic palynological zones ranging in age from Early Permian (Asselian-Sakmarian) to Late Triassic (Carnian-Norian). Precise age for the Gondwanic palynological zones, recognized in the Purnea Basin and already established in other Indian Gondwana basins, are provided in the milieu of additional palynological data obtained from the Gondwana successions of this basin.The Lower Gondwana (Permian) palynofloras of Purnea Basin recorded from the Karandighi, Salmari, Katihar and Dinajpur formations resemble the palynological assemblages earlier recorded from the Talchir, Karharbari, Barakar and Raniganj formations respectively, and suggests the full development of lower Gondwana succession in this basin. The Upper Gondwana (Triassic) succession of this basin is marked by the Early and Middle to Late Triassic palynofloras that resemble Panchet and Supra-Panchet (Dubrajpur/Maleri Formation) palynological assemblages, and indicates the occurrence of complete Upper Gondwana succession also in the Purnea Basin.The lithological and biostratigraphic attributes of Gondwana sediments from Purnea, Rajmahal and western parts of Bengal Basin (Galsi Basin) are almost similar and provides strong evidences about the existence of a distinct N-S trending Gondwana Graben, referred as the Purnea-Rajmahal-Galsi Gondwana Graben. Newly acquired biostratigraphic data from the Gondwana sediments of CHK-A, MNG-A and PLS-A wells from central part of Bengal Basin and Bouguer anomaly data suggest that these wells fall in a separate NE-SW trending graben of “Chandkuri-Palasi-Bogra Gondwana Graben”. Although, the post-Gondwana latest Jurassic-Early Cretaceous Rajmahal Traps and and intertrappean beds succeed the Upper Gondwana successions in Rajmahal, Galsi and Chandkuri-Palasi Gondwana basins, but not recorded in the drilled wells of Purnea Basin, instead succeeded by the Neogene Siwalik sediments.  相似文献   

11.
12.
Heavy mineral analysis has been carried out in the Barakar Formation of the Talchir Gondwana Bbasin, Orissa. The characteristic heavy minerals are garnet, zircon, tourmaline, rutile, biotite, chlorite, pyroxenes, hornblende, staurolite, sillimanite, apatite, epidote, sphene, spinel and siderite including opaques and leucoxene. These heavy minerals are divisible into four groups on the basis of principal component analysis and suggest derivation of Barakar sediments from pegmatite, acid and basic igneous as well as low- and high-rank metamorphic rocks lying to the south of the Talchir Gondwana Basin. Though the heavy mineral suites of all the sandstone samples are by and large similar, differences have been noticed in the frequencies of many heavy minerals in vertical succession. Cyclic nature and vertical fluctuation of heavy mineral frequencies can be ascribed to variation of the relief of the source area, sudden release of some of the minerals in the source region and/or existence of favourable geochemical condition to escape partial dissolution.  相似文献   

13.
The Karharbari and Barakar coal measures of Giridih and Saharjuri basins of Bihar, eastern India, comprise an interbedded assemblage of sandstone, shale and coal in variable abundance. The lithofacies composition records a progressive decrease in sandstone and enrichment of shale and coal from Karharbari up to Barakar. Application of first-order embedded Markov-chain statistics to subsurface data of Karharbari (52 borehole logs) and Barakar (10 borehole logs) reveals that deposition in both the coal measures followed a Markovian mechanism with variable probability, to yield a sequence of upward transition from sandstone through shale to coal. The repetitive fining-upward cycles are asymmetrical, i.e. sandstone → shale → coal → sandstone in the case of Karharbari, but symmetrical as sandstone → shale → coal → shale in Barakar.The abundance of sandstone and the asymmetrical nature of Karharbari cycles are attributed to abrupt shifting of channel bars in low-sinuosity anabranching streams. By contrast, the subequal amount of sandstone, shale and coal forming symmetrical cycles in the overlying Barakar Formation is due perhaps to a slow and gradual shift of the stream channels over and across the adjacent subenvironments of the flood plain.  相似文献   

14.
15.
16.
17.
Major and trace element analyses of representative samples of various types of banded iron-formation and its various minerals, associated sediments, iron ores and volcanic tuff from different localities of Orissa, India, are presented in this paper. The Orissa banded iron-formation is classified as Precambrian banded iron formation and is similar to the oxide facies iron formation of Lake Superior type. The Orissa iron formation consists only of iron oxide and silica with total absence of iron silicate, sulfide and carbonate minerals, and is devoid of terrigenous material. The trace element content suggests the source of the underlying quartzite to be a continental igneous rock mass, while the interbedded tuff are of undoubted volcanic origin. The overlying iron formation were chemically precipitated as oxidate sediments in which the principal iron mineral — magnetite — was formed at low temperature in a shallow marine environment. From the overwhelming similarity of major and trace element contents of all the samples from the different localities, it is postulated that these detached outcrops originated in the same continous basin.  相似文献   

18.
The cyclic arrangement of lithofacies of the Karharbari Formation of the Damuda Group from a part of the Talchir Gondwana basin has been examined by statistical techniques. The lithologies have been condensed into five facies states viz. coarse-, medium-, fine-grained sandstones, shale and coal for the convenience of statistical analyses. Markov chain analysis indicates the arrangement of Karharbari lithofacies in form of fining upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium-and fine-grained sandstones, shale and coal at the top. The entropy analysis categorizes the Karharbari cycles into the C-type cyclicity, which is essentially a random sequence of lithologic states. Regression analysis undertaken in the present study indicates the existence of sympathetic relationship between total thickness of strata (net subsidence) and number and average thickness of sedimentary cycle and antipathic relationship between number and average thickness of sedimentary cycle. These observations suggest that cyclic sedimentation of the Karharbari Formation was controlled by autocyclic process by means of lateral migration of streams activated by intrabasinal differential subsidence, which operated within the depositional basin and the channels carrying coarse grade clastic sediments, which make the cycles thicker, tend to be more common in the areas of maximum subsidence. Clastic sediments issued from the laterally migrating rivers interrupted the cyclic sedimentation of the Karharbari Formation in many instances.  相似文献   

19.
Some important primary structures have been studied and described from the chromities of Sukinda Valley in Orissa, India. The structures include primary layering, Ball and Pillow structures, and cross laminations. From the similarity of the structures and texture of the chromitites with the sedimentary rocks, it is presumed that the chromities were formed by magmatic sedimentation under the influence of gravity.
Zusammenfassung Aus den Chromititen von Sukinda Valley in Orissa, Indien, werden einige wichtige, primäre Gefüge untersucht und beschrieben. Die Gefüge zeigen primäre Bänderung, Ball and Pillow-Lagen und Kreuzschichtung. Aus der Ähnlichkeit der Gefüge der Chromitite mit denen sedimentärer Gesteine wird geschlossen, daß die Chromitite durch gravitative, magmatische Saigerung sedimentiert worden sind.
  相似文献   

20.
Storm surges generated by the strong tangential wind stressesand normal atmospheric pressure gradients at the sea surface due to tropical cyclones (TC'S)have been studied with the goal of detecting any significant and systematic changes due to climatechange. Cyclone and storm surge data for the 19th and 20th centuries for the Bay of Bengalcoast of the state of Orissa in India are available to varying degrees of quality and detail,the data being more scientific since the advent of the India Meteorological Department in 1875.Based on more precise data for the period 1971 to 2000, statistical projections have been madeon the probable intensities of tropical cyclones for various return periods. The super cyclone ofOctober 29, 1999 (SC1999) appears to have a return period of about 50 years. The cyclones of1831, 1885 and possibly the one in 1895 could have been super cyclones. During the 19th century,there were 72 flooding events associated with cyclones, whereas in the 20th century therewere only 56 events. There was no observational evidence to suggest that there was an increaseeither in the frequency or intensity of cyclones or storm surges on the coast of Orissa. However,the impact of cyclones and surges is on the increase due to increase of population and coastalinfrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号