首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabian-Nubian-Shield (ANS) is composed of a number of island arcs together with fragments of oceanic lithospere and minor continental terranes. The terranes collided with each other until c. 600 Ma ago. Subsequently, they were accreted onto West Gondwana, west of the present River Nile. Apart from widespread ophiolite nappe emplacement, collisional deformation and related lithospheric thickening appear to be relatively weak. Early post-collisional structures comprise not only extensional features such as fault-bounded (molasse) basins and metamorphic core complexes, but also major wrench fault systems, and thrusts and folds. The Hammamat Group was deposited in fault-bounded basins, which formed due to N-S to NW-SE directed extension. Hammamat Group sediments were intruded by late orogenic granites, dated as c. 595 Ma old. A NNW-SSE-oriented compression prevailed after the deposition of the Hammamat Sediments. This is documented by the presence of NW-verging folds and SE-dipping thrusts that were refolded and thrusted in the same direction. Restoration of a NNW-SSE- oriented balanced section across Wadi Queih indicates more than 25% of shortening. Transpressional wrenching related to the Najd Fault System followed this stage. The wrenching produced NW-SE sinistral faults associated with positive flower structures that comprise NE-verging folds and SW-dipping thrusts. Section restoration across these late structures indicates 15 17% shortening in the NE-SW direction. At a regional scale, the two post-Hammamat compressional phases produced an interference pattern with domes and basins. It can be shown that the Najd Fault System splays into a horsetail structure in the Wadi Queih area and loses displacement towards N and NW. The present study shows a distinct space and time relationship between deposition of Hammamat Group/late-Pan-African clastic sediments and late stages of Najd Fault wrench faulting: Hammamat deposition is followed by two episodes of compression, with the second episode being related to Najd Fault transpression. Therefore, the Hammamat sediments do not represent the latest tectonic feature of the Pan-African orogeny in the ANS. The latest orogenic episodes were the two successive phases of compression and transpression, respectively. It is speculated that extension during (Hammamat) basin formation was sufficiently effective to reduce the thickness of the orogenic lithosphere until it became gravitationally stable, and incapable of further gravitational deformation.  相似文献   

2.
The Hammamat molasse sediments of the Eastern Desert of Egypt were deposited in isolated basins formed during an initial stage of orogen parallel N–S extension (650–580 Ma) in the Neoproterozoic time. Supply of sediments to the molasse basins began after the eruption of Dokhan volcanics (602–593 Ma), exhumation of core complexes (650–550 Ma), and intrusion of late tectonic granites (610–550 Ma). The late Neoproterozoic structures in the molasse sediments include: (1) NNW-directed thrusts due to NNW–SSE shortening (650–640 Ma), indicated by the presence of NE-, ENE-, and WSW-trending folds and NNW-directed thrusts. (2) SW- and NE-directed thrusts due to ENE–WSW constriction during oblique convergence and arc accretion at around 640–620 Ma. Many of the map- and mesoscopic-scale NW-trending folds in the core complexes, the molasse sediments, and the Neoproterozoic nappes in the Eastern Desert are related to this event. Sinistral shearing along the Najd Fault System (650–540 Ma) resulted in the development of subvertical foliation, subhorizontal stretching lineation, and NW-trending tight folds overprinting earlier folds. Stretched pebbles are oriented NW–SE and WNW–ESE in the molasse basins localized within the Najd Fault System, and NE–SW in the basins outside the influence zone of this NW-trending fault system. Strain estimated using pebbles from nine molasse basins indicate that the amount of strain differs from one basin to another and from one place to another within the same basin. Weak tectonic strain (Rs = 2.16–2.24) is obtained from post-orogenic basins; moderate strains are reported from foreland basins (Rs = 2.37–3.18), whereas moderate to high tectonic strains are recorded from the intermontane basins (Rs = 2.40–4.36). The obtained tectonic strain and K values indicate that the flattening strain prevails in the post-orogenic and foreland basins, whereas as both constrictional and flattening strains are recorded in intermontane basins. Strain variation from one basin to another and within the individual basin is attributed to presence of thrust and sinistral shear zones. Away from the deformed zones, the pebbles show no significant stretching. Two phases of thrusting and an episode of transpressional sinistral shearing are the latest structure features of the East African orogeny in the Arabian–Nubian Shield.  相似文献   

3.
《Precambrian Research》2005,136(1):27-50
The Wadi Mubarak belt in Egypt strikes west–east (and even northeast–southwest) and crosscuts the principal northwest–southeast trend of the Najd Fault System in the Central Eastern Desert of Egypt. The belt therefore appears to be a structural feature that formed postdate to the Najd Fault System. In contrast, it is shown here that the deformation in the Wadi Mubarak belt can be correlated with the accepted scheme of deformation events in the Eastern Desert of Egypt and that its geometry and apparently cross-cutting orientation is controlled by a large granite complex that intruded prior to the structural evolution. Structural correlation is facilitated by a series of intrusions that intrude the Wadi Mubarak belt and resemble other intrusions in the Eastern Desert. These intrusions include: (1) an older gabbro generation, (2) an older granite, (3) a younger gabbro and (4) a younger granite. The structural evolution is interpreted to be characterized by early northwest directed transport that formed several major thrusts in the belt. This event is correlated with the main deformation event in the Eastern Desert, elsewhere known as D2. During this event the regional fabric of the Wadi Mubarak belt was wrapped around the El Umra granite complex in a west–east orientation. The Wadi Mubarak belt was subsequently affected during D3 by west–east and northwest–southeast trending sinistral conjugate strike–slip shear zones. This event is related to the formation of the Najd Fault System. Detailed resolution of superimposed shear sense indicators suggest that D3 consisted of an older and a younger phase that reflect the change of transpression direction from east-southeast–west-northwest to eastnortheast–westouthwest. The El Umra granite complex is dated here with single zircon ages to consist of intrusion pulses at 654 and 690 my. These ages conform with the interpretation that it intruded prior to D2 and that the structural pattern of the Wadi Mubarak belt was initiated early during D2.  相似文献   

4.
Kinematics of compressional fold development in convergent wrench terranes   总被引:1,自引:0,他引:1  
Kinematic models are presented for compressional fold development in wrench and convergent wrench terranes that relate fold shortening, axial rotation, and axial extension. Fold shortening may be derived from final fold geometry. Existing fold geometry and axial orientation, two readily measurable quantities, provide the data needed to determine the relative components of shearing and convergence within the fold system. Analyses utilizing these kinematic models indicate that folds developed in sedimentary rocks in the wrench borderlands of both the Rineonada and San Andreas wrench faults in central California are the product of strongly convergent wrenching. The axes of these folds have been rotated no more than a few degrees during the course of their development. In contrast, folds developed in the Alpine Schists along the Alpine fault in New Zealand and in Pleistocene sediments along the southern limit of the San Andreas fault suggest an almost pure wrench setting and large (>25 °) axial rotations.

Significant axial extension is inherent in wrench-related compressional folds. This axial extension is commonly manifest in the form of normal and strike-slip faults that are internal to the folds and trend at high angles to the fold axes. The relative amount of axial extension diminishes as the degree of convergence increases. This axial extension, and the associated extensional features, can be a diagnostic indication of the influence of wrenching.  相似文献   


5.
A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt   总被引:3,自引:0,他引:3  
Detailed structural geological and related studies were carried out in a number of critical areas in the Proterozoic basement of eastern Egypt to resolve the structural pattern at a regional scale and to assess the general characteristics of tectonic evolution, orogeny and terrane boundaries. Following a brief account of the tectonostratigraphy and timing of the orogenic evolution, the major structural characteristics of the critical areas are presented. Collisional deformation of the terranes ended about 615-600 Ma ago. Subsequent extensional collapse probably occurred within a relatively narrow time span of about 20 Ma (575 – 595 Ma ago) over the Eastern Desert and was followed by a further period of about 50 Ma of late to post-tectonic activity. The regional structures originated mainly during post-collisional events, starting with those related to extensional collapse (molasse basin formation, normal faulting, generation of metamorphic core complexes). Subsequent NNW-SSE shortening is documented by large-scale thrusting (towards the NNW) and folding, distributed over the Eastern Desert, although with variable intensity. Thrusts are overprinted by transpression, which was localized to particular shear zones. Early transpression produced, for example, the Allaqi shear zone and final transpression is documented in the Najd and Wadi Kharit-Wadi Hodein zones. Two terrane boundaries can be defined, the Allaqi and South Hafafit Sutures, which are apparently linked by the high angle sinistral strike-slip Wadi Kharit-Wadi Hodein shear zone with a tectonic transport of about 300 km towards the W/NW. In general, the tectonic evolution shows that extensional collapse is not necessarily the final stage of orogeny, but may be followed by further compressional and transpressional tectonism. The late Pan-African high angle faults were reactivated during Red Sea tectonics both as Riedel shears and normal faults, where they were oriented favourably with respect to the actual stress regime.  相似文献   

6.
滇西新生代兰坪盆地和剑川盆地分别位于哀牢山–红河断裂带两侧,青藏高原东构造结内,其沉积过程和构造变形对青藏高原东南缘的构造演化有重要的启示意义。通过对这两个盆地古近纪沉积和构造过程的研究,我们发现兰坪盆地和剑川盆地及邻区的构造变形分为三期:始新世早期的强烈挤压变形、始新世中晚期的伸展变形、渐新世的走滑变形。始新世早期的挤压变形主要表现为兰坪地区的褶皱–冲断系统、哀牢山-红河断裂的逆冲活动和剑川盆地的宽缓褶皱。沉积方面,古新统勐野井组(E_1m)较为稳定的细粒滨湖相沉积转变为始新统宝相寺组(E_2b)较粗的具有前陆盆地性质的河流相沉积,特别是宝相寺组底部发育的一套快速堆积的磨拉石建造,可能是对始新世强烈挤压环境下的沉积响应。始新世中晚期伸展变形体现在盆地的构造环境由早期的挤压环境变为伸展环境和该时期大量富钾岩体和岩脉的侵入,沉积学上,下始新统宝相寺组的河流相转变为中始新统金丝厂组(E_2j)具有快速堆积磨拉石特征的曲流河沉积,极可能是对构造体制变革的沉积响应。渐新世的走滑变形则体现在渐新统的缺失和哀牢山–红河断裂的早期左行走滑。因此,我们认为剑川–兰坪地区在始新世中期和渐新世均发生了显著的运动学转换,这一认识也得到了始新世中期兰坪和剑川盆地物源明显变化的支持。结合青藏高原东南部始新世中晚期岩浆的活动,渐新世大型剪切带(崇山剪切带、高黎贡剪切带)的强烈走滑和保山块体的旋转,我们推测青藏高原东南缘古近纪的构造演化为古新世-始新世早期的挤压、始新世中晚期的伸展、渐新世的转换压缩。  相似文献   

7.
Mapping based on the interpreted seismic data covering the Abu Gharadig Basin in the northern Western Desert has revealed that the deposition of the Upper Cretaceous succession was controlled by dextral wrench tectonics. This dextral shear accompanied NW movement of the African Plate relative to Laurasian Plate. Structural depth maps of the Cenomanian Bahariya Formation and the Turonian-Coniacian D and A members of Abu Roash Formation display a clear NE-SW anticline dissected by NW-SE normal faults. This anticline represents one of the en echelon folds characterizing the wrench compressional component. The interpreted normal faults reflect the extensional T-fractures associated with the wrenching tectonics. The interaction between the aforementioned NE-SW anticline with the NW-SE extensional faults further confirms the effect of the Upper Cretaceous dextral wrench tectonic. However, the influence of this wrench tectonics was gradually diminishing from the Cenomanian up to the Coniacian times. The NW-SE compressional stress of the dextral wrench compressional component during the Cenomanian up to Coniacian age was greater in NW direction than the SE direction. Three mapped structural closures which are predicted to be potential hydrocarbon traps belonging to the Bahariya Formation and Abu Roash D Member, and are recommended to be drilled in the study area, with potential reservoirs. The regularity of the en echelon array of both anticlines and normal faults within the wrench zones suggests additional closures may be located elsewhere beside the study area.  相似文献   

8.
 中晚三叠世,在扬子和华北两大板块碰撞拼接过程中,郯庐断裂产生大规模走滑运动,使下扬子沿江地区处于走滑挤压作用下,从而形成走滑挤压盆地。黄马青群是这一盆地的沉积记录,盆地内沉积中心呈侧向斜列展布,沉积物与其物源区发生错离,盆地随时间推移逐渐收缩。盆地内发育的两组共轭剪切带、斜列分布的褶皱及其伴生的逆冲推覆构造是走滑挤压应力的反映。郯庐断裂是华北、扬子两大板块间斜向拼接所形成的转换断层。  相似文献   

9.
李培军  夏邦栋 《地质科学》1995,30(2):130-138
中晚三叠世,在扬子和华北两大板块碰撞拼接过程中,郯庐断裂产生大规模走滑运动,使下扬子沿江地区处于走滑挤压作用下,从而形成走滑挤压盆地。黄马青群是这一盆地的沉积记录,盆地内沉积中心呈侧向斜列展布,沉积物与其物源区发生错离,盆地随时间推移逐渐收缩。盆地内发育的两组共轭剪切带、斜列分布的褶皱及其伴生的逆冲推覆构造是走滑挤压应力的反映。郯庐断裂是华北、扬子两大板块间斜向拼接所形成的转换断层。  相似文献   

10.
Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1–D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (?WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.  相似文献   

11.
自中三叠世扬子与华北板块发生碰撞—深俯冲作用以来,大别造山带南界上的襄樊—广济断裂带主要经历过两次变形事件: 1)早期变形事件发生在中三叠世末—晚三叠世初的造山带折返阶段,表现为造山带南边界上的韧性剪切带。这期北西—南东走向的剪切带向南西陡倾,发育北西—南东向的矿物拉伸线理,主要为右行走滑的运动性质,属于造山带斜向折返的侧边界走滑剪切带。造山带折返过程中将前陆褶断带北缘原先东西向褶皱改造为北西—南东走向。2)晚期变形事件发生在晚侏罗世,表现为脆性逆冲断层,使得前陆褶断带向北东逆冲在造山带南缘之上,同时在前陆上形成了一系列的逆冲断层。该断裂带的晚期逆冲活动与郯庐断裂带左行平移同时发生,代表了滨太平洋构造活动的开始。  相似文献   

12.
The Northwestern (Maghreb) boundary of the Nubia (Africa) Plate   总被引:1,自引:0,他引:1  
Alain Mauffret   《Tectonophysics》2007,429(1-2):21-44
A study of the present compressional deformation of the Northwestern (Maghreb) Nubia (Africa) margin is derived from the analysis of more than 20,000 km of seismic profiles. In the western part the compression is distributed in a large zone with on-land compression in Algeria, mainly strike-slip deformation on the Algerian margin and folds and strike-slip faulting in Eastern Spain. In the middle of the Algerian margin, around Algiers, the evidences of compression become more obvious. In this area a ridge trending N–S that is interpreted as a middle to late Miocene spreading center interacted with the transpressional margin that trends E–W. North of the location of the Boumerdes–Zemmouri earthquake the oceanic crust is deformed by blind thrusts up to 60 km from the coast. These thrusts are south dipping and with the northward dipping thrusts located onshore form a wedge that maybe a positive flower structure at a crustal scale related to the right-lateral transpression of the margin. In the eastern part of the Northwestern (Maghreb) Nubia (Africa) Deformed Belt, off eastern Algeria and Tunisia, the deformation is more intense but limited to the north by the continental slope. Large late Miocene Tortonian folds are cut by the Messinian erosional surface but the present deformation is also evident. It is suggested that the deformation with a double vergence may be followed up to the north of Sicily. After the docking (18 Ma) of the Kabylies to the Africa Plate, the crust has been thinned and the Algerian Basin opened during the middle-late Miocene with an E–W direction. From the late Miocene to the Present the margin has been rethickened by transpression and uplifted.  相似文献   

13.
天山地区碰撞后构造与盆山演化   总被引:48,自引:0,他引:48  
研究表明,近东西向的天山造山带基本格架在古生代晚期已经初步形成;平行造山带广泛分布的二叠纪红色磨拉石证明当时造山隆升作用非常强烈,导致前陆盆地普遍发育。三叠纪,天山造山带遭受区域剥蚀夷平,盆山高差缩小,盆地规模进一步扩大。侏罗纪—古近纪,由于板内伸展作用,在准平原化的天山地区形成了一系列伸展盆地,呈近东西向分布。新近纪以来,受南面印度—欧亚陆—陆碰撞的影响,天山地区发生强烈陆内变形,以逆冲推覆和褶皱堆叠为特征;节理统计表明新生代的主压应力为南北方向。晚新生代,由印度和欧亚大陆碰撞产生的强烈挤压作用对大陆腹地的天山地区影响很大:前中生代块体发生剧烈隆升和褶皱,伴随大规模新生代坳陷的形成,导致盆山高差急剧增大;脆性剪切与挤压变形构造叠加在韧性变形的古生代岩层之上。同时,中生代拉伸盆地发生构造反转,形成新生代挤压盆地,盆山交接带变形以台阶状逆断层和断层相关褶皱为特征。由于盆地朝造山带的下插作用,使古生代的岩层呈构造岩片方式逆冲推覆在盆地边缘的中新生代岩层之上,当穿越不同地质构造单元时表现出不同的运动学特征。强烈挤压褶皱冲断是晚新生代盆山交接带的基本特征和最普遍的盆-山耦合方式,局部伴有小规模近东西向的走滑断层。中生代沉积岩的褶皱与断裂、侏罗纪煤层自燃及烧结岩的形成、强烈地震与断层活动、以及新疆独特的镶嵌状盆山格局,都是新近纪以来构造作用的产物。  相似文献   

14.
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW–SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW–SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE–WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480–525 °C at 2–4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660–580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle–ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement along transcurrent shear zones and low angle normal ductile shear zones and consequently, development and exhumation of Sibai core complex.  相似文献   

15.
The Najd strike-slip fault system extends over the northeastern Arabian Shield in a zone >1200 km in length and >300 km wide. Faults trend NW-SE with strike lengths >500 km but small sinistral displacements of <25 km. Cumulative displacement across the zone is >240 km. Najd faults were active in the late Proterozoic and post-date cratonization of the Shield. Associated secondary structures include grabens, thrust faults, folds and dike swarms. In the southwest of the Najd system, near Zalm, initial faulting was dextral and began earlier than formerly thought. Emplacement of a plutonic complex was controlled by Najd fractures of dextral geometry and displacements. The same fractures were active before and after deposition of a group of volcanosedimentary rocks in grabens orientated consistently with development in a dextral strike-slip regime. Graben deformation was controlled by sinistral motion along the same fractures responsible for graben development and also by younger fractures of sinistral geometry and displacement. Dike swarms in the area are also consistent with early dextral and later sinistral shear of Najd trend. Structures in the Zalm area occur throughout the Najd system and the consistent chronology of older dextral structures dislocated and deformed by younger sinistral faults suggests a reversal in the sense of motion of the Najd system as a whole.  相似文献   

16.
The North Atlantic craton of southwestern Greenland hosts several orogenic gold occurrences, although, to date, none is in production. Four gold provinces are distinguished and include Godthåbsfjord, Tasiusarsuaq, Paamiut, and Tartoq. In the Godthåbsfjord gold province, the hypozonal gold occurrences are aligned along the major ca. 2660–2600 Ma Ivinnguit fault. Orogenic gold mineralization correlates temporally with, and is related to, ductile deformation along this first-order structure. The northern part of the Tasiusarsuaq gold province is characterized by small hypozonal gold occurrences that are controlled by 2670–2610 Ma folds and shear zones. Auriferous fluids were focused into the structures in both gold provinces during west-directed accretion of the Kapisilik terrane (2650–2580 Ma) to the already amalgamated terranes of the North Atlantic craton. In the southern part of the Tasiusarsuaq gold province, hypozonal gold mineralization is hosted in back-thrusts (Sermilik prospect) and thrusts (Bjørnesund prospect) that formed at 2740 Ma and 2860–2830 Ma, respectively. The deformation is related to the ca. 2850 Ma accretion of the Sioraq block and the Tasiusarsuaq terrane, and the 2800–2700 Ma accretion of the Tasiusarsuaq terrane and the Færingehavn and Tre Brødre terranes.Mesozonal orogenic gold mineralization is hosted in an accretionary complex in the Paamiut and Tartoq gold provinces. Gold occurrences cluster over a strike extent of approx. 40 km in thrusts and complex strike-slip settings in lateral ramps. The timing of the E-vergent terrane accretion in both areas is unknown, and could either be at ca. 2850 Ma or 2740 Ma. In the eastern part of the Paamiut gold province, quartz veins and associated alteration zones were overprinted by granulite facies metamorphism and show evidence for partial melting. These outermost parts of the accretionary complex were involved in burial-exhumation tectonics during crustal accretion.Mainly three different orogenic stages related to gold mineralization are distinguished in the North Atlantic craton between ca. 2850 Ma and 2610 Ma. These are generally accretionary tectonic episodes, and gold mineralization is hosted either in reactivated fault systems between terranes or accretionary complex structures along the deformed cratonic margin. The larger orogenic gold occurrences formed at ca. 2740–2600 Ma that appears to be a period of orogenic gold mineralization globally, although significant gold resources in the North Atlantic craton have yet to be identified.  相似文献   

17.
Polydeformed and metamorphosed Neoproterozoic rocks of the East African Orogen in the Negele area constituted three lithostructurally distinct and thrust-bounded terranes. These are, from west to east, the Kenticha, Alghe and Bulbul terranes. The Kenticha and Bulbul terranes are metavolcano-sedimentary and ultramafic sequences, representing parts of the Arabian-Nubian Shield (ANS), which are welded to the central Alghe gneissic terrane of the Mozambique Belt affinity along N-S-trending sheared thrust contacts. Structural data suggest that the Negele basement had evolved through three phases of deformation. During D1 (folding) deformation, north-south upright and inclined folds with north-trending axes were developed. East and west-verging thrusts, right-lateral shearing along the north-oriented Kenticha and Bulbul thrust contacts and related structural elements were developed during D2 (thrusting) deformation. The pervasive D1 event is interpreted to have occurred at 620-610 Ma and the D2 event ended prior to 554 Ma. Right-lateral strike-slips along thrust contacts are interpreted to have been initiated during late D2. During D3, left-lateral strike-slip along the Wadera Shear Zone and respective strike-slip movements along conjugate set of shear zones were developed in the Alghe terrane, and are interpreted to have occurred later than 557 Ma. The structural data suggest that eastward thrusting of the Kenticha and westward tectonic transport of the Bulbul sequences over the Alghe gneissic terrane of the Mozambique Belt, during D2, were accompanied by right-lateral strike-slip displacements along thrust contacts. Right-lateral strike-slip movements along the Kenticha thrust contact, further suggest northward movement of the Kenticha sequence during the Pan-African orogeny in the Neoproterozoic. Left-lateral strike-slip along the orogen-parallel NNE-SSW Wadera Shear Zone and strike-slip movements along a conjugate set of shear zones completed final terrane amalgamation between the Arabian-Nubian Shield and the Mozambique Belt in Neoproterozoic southern Ethiopia.  相似文献   

18.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

19.
《Geodinamica Acta》2013,26(5):287-300
The primordially structural-lithofacial relationships in the Adriatic Carbonate Platform (AdCP) of Croatia were formed by a Late Cretaceous synsedimentary tectonics. During Cenomanian, an extensional tectonic regime differentiated AdCP into several kilometres large paleoenvironmental segments which behaved as individual depocenteres. The latest Cenomanian and earliest Turonian were tectonically relatively quiet periods during which sediments only recorded a relative sea-level rise. Compression commenced during the middle Santonian and formed first (NW-SE) gentle folds in the frontal part of the Split-Dubrovnik thrust. These folds had amplitudes of tens to hundreds of metres and are up to ten kilometres in strike. The apical parts of the anticlines were dominated by shallow-marine deposition with short emergences simultaneously, slope deposition of pelagic sediments took place in the synclines. By the end of the Campanian, compression weakened and younger sediments infilled former depressions while the deposition ended in the Adriatic hinterland of Croatia. During the Maastrichtian the compression recommenced and the index of older folds increased while new folds and reverse faults were formed. Such deformations created a differentiated morphology at the surface subsequently overlaid by Palaeogene sediments. Clastic sediments accumulated indeed in this paleodepression during the Palaeogene and Miocene–Quaternary, forming favourable structural conditions for hydrocarbon generation.  相似文献   

20.
刘志宏  宋健  刘希雯  吴相梅  高翔 《岩石学报》2020,36(8):2383-2393
松辽盆地位于欧亚板块东部,毗邻太平洋板块,是叠置于华北板块和西伯利亚板块之间的晚古生代碰撞造山带之上规模最大的中-新生代陆相含油气盆地,具有断、坳双重结构。自白垩纪以来,松辽盆地南部主要经历两期挤压作用:NW-SE向挤压作用发生在下白垩统营城组碎屑岩段-上白垩统泉头组沉积时期,挤压作用持续了18Myr;近E-W向挤压作用发生在四方台组-古近系沉积时期,挤压作用至少持续了39.1Myr。两期挤压作用都表现出东强西弱的特点,第二期挤压作用的变形强度远大于第一期,并且在明水组沉积晚期变形强度最大,这期挤压作用奠定了松辽盆地现今的构造格局。下白垩统营城组上部碎屑岩段-上白垩统泉头组和四方台组-古近系的沉积作用分别记录了第一期、第二期挤压作用形成的反转构造和断层相关褶皱的变形过程。上述构造在不同时期隆升速率与沉积速率之间的关系,控制了盆地的沉积范围、沉积地层的厚度和接触关系在空间上的变化。松辽盆地在上述两个构造演化阶段都处于活动大陆边缘的陆内区域,盆地性质都应属于陆内挤压坳陷盆地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号