首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Sierra Grande Formation (Silurian-Early Devonian) consists of quartz arenites associated with clast supported conglomerates, mudstones, shales and ironstones. Eight sedimentary facies are recognized: cross-stratified and massive sandstone, plane bedded sandstone, ripple laminated sandstone, interstratified sandstone and mudstone, laminated mudstone and shale, oolitic ironstone, massive conglomerate and sheet conglomerate lags. These facies are interpreted as shallow marine deposits, ranging from foreshore to inner platform environments. Facies associations, based on vertical relationships among lithofacies, suggest several depositional zones: (a) beach to upper shoreface, with abundant plane bedded and massive bioturbated sandstones; (b) upper shoreface to breaker zone, characterized by multistorey cross-stratified and massive sandstone bodies interpreted as subtidal longshore-flow induced sand bars; (c) subtidal, nearshore tidal sand bars, consisting of upward fining sandstone sequences; (d) lower shoreface zone, dominated by ripple laminated sandstone, associated with cross-stratified and horizontal laminated sandstone, formed by translatory and oscillatory flows; and (e) transitional nearshore-offshore and inner platform zones, with heterolithic and pelitic successions, and oolitic ironstone horizons. Tidal currents, fair weather waves and storm events interacted during the deposition of the Sierra Grande Formation. However, the relevant features of the siliciclastics suggest that fair weather and storm waves were the most important mechanisms in sediment accumulation. The Silurian-Lower Devonian platform was part of a continental interior sag located between southern South America and southern Africa. The Sierra Grande Formation was deposited during a second order sea level rise, in which a shallow epeiric sea flooded a deeply weathered low relief continent.  相似文献   

2.
The upper part of the Riley Formation, Cambrian of central Texas, is primarily composed of a sequence of thoroughly trough cross-stratified deposits. The dominant lithologies range from fossiliferous glaucarenite to highly glauconitic bio-sparrudite. These cross-stratified deposits accumulated within a tidal inlet and associated lagoonal tributary and distributary channels. Tidal inlet-fill strata are underlain by shallow, open marine oosparites and biomicrites and are overlain by parallel bedded glaucarenites which accumulated as part of a barrier island complex. The parallel bedded deposits exhibit large scale, gently inclined strata, ripple cross-stratification, and a minor amount of vertical burrows. Some glaucarenite units within the tidal inlet-fill have local concentrations of skeletal material, primarily trilobite carapaces. These concentrations are most abundant in the bottoms of troughs. Cementation by bladed to fibrous spar between the carapaces has resulted in the nodular appearance of these skeletal accumulations. Calcite clasts, with relict evaporite textures, occur within the carbonate nodules and surrounding glaucarenite. These clasts were eroded from the shallow subsurface of the barrier island as the tidal inlet migrated. The presence of the former evaporite clasts attest to an arid climate at the time of their formation.  相似文献   

3.
Strata of the Bardas Blancas Formation (lower Toarcian–lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive–regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.  相似文献   

4.
5.
Aeolian limestones are widespread in the Quaternary record and have been identified in outcrops and cores of late Palaeozoic strata. These rocks have been interpreted as a low latitude signal of glacio-eustatic sea level fluctuations and have not been previously reported from the Mesozoic or from other episodes of earth history generally believed to have been non-glacial. Numerous lenticular bodies of cross-stratified oolite lie near the contact between the lower and upper members of the mudstone-dominated lower Sundance Formation (Middle and Upper Jurassic) in the Bighorn Basin of north-central Wyoming, USA. The lenses, up to 12 m thick, contain sedimentary structures diagnostic of aeolian deposition. Inversely graded laminae within thick sets of cross-strata were deposited by climbing wind ripples. Adhesion structures and evenly dispersed lag granules are present in flat-bedded strata at the bases of several of the oolite bodies. Thin sections reveal abundant intergranular micrite of vadose origin. The lenses appear to represent virtually intact, isolated aeolian bedforms that migrated across a nearly sand-free deflation surface. When the Sundance Sea transgressed the dunes, a thin (<1 m thick), wave-rippled, oolite veneer formed on the upper surface of the aeolianite. Previous workers, primarily on the basis of sedimentary structures in the veneer, interpreted the oolite lenses as tidal sand bodies. The dunes provide clear evidence of widespread subaerial exposure on the crest and north flank of the Sheridan Arch. This structural high was delineated by previous workers who demonstrated thinning of pre-upper-Sundance Formation strata and localized development of ooid shoals. Ooids that formed in shoals on the windward (southern) side of the palaeohigh were exposed and deflated during lowstand. Thin, scour-filling ooid grainstone lenses that crop out in the southern part of the study area represent remnants of the marine beds that sourced the aeolianites. Farther north (down-wind), oolitic dunes prograded over thinly laminated lagoonal silts. When relative sea level began to rise, the uncemented dunes were buried under fine-grained marine sediment as the lee side of a low-relief island was inundated.  相似文献   

6.
Wave-dominated sandy shores occur along much of the coast of Western Australia. Despite local variations there is a characteristic distribution of lithofacies (corresponding to different geomorphic zones). Five lithofacies are recognised: (1) trough-bedded sand/gravel; (2) laminated sand; (3) laminated/bubble sand; (4) laminated/disrupted sand; and (5) aeolian cross-stratified sand.The trough-bedded sand/gravel lithofacies is being deposited in the shallow shoreface below LWL. The laminated sand and laminated/bubble sand lithofacies are sands with gravel layers being deposited on the foreshore swash zone; extensive bubble (or vesicular) sand is common towards HWL especially in berms. The laminated/disrupted sand lithofacies is being deposited on the backshore between HWL and storm water levels and consists of horizontally layered to homogeneous sands with storm debris, especially wood, weed and floatable skeletons (e.g. Sepla and Spirula). The aeolian cross-stratified sand lithofacies is forming in beach ridge/dune areas and consists of fine sands with large-scale, generally landward-dipping forests; soils and rootlets are common.Recognition of these lithofacies within a sedimentary sequence enables reconstruction of gross shoreline conditions in terms of wave and eolian environments, tidal and storm heights, and palaeogeography. Each of these lithofacies with their characteristic features is recognised in Pleistocene sequences in Perth Basin. The Pleistocene sequences fit a model of coastal progradation with the trough-bedded sand/gravel lithofacies at the base and the aeolian sand lithofacies at the top. The value of such a stratigraphic sequence, however, extends beyond the Pleistocene.  相似文献   

7.
Despite a low tidal range and relatively low wave conditions, the Mackenzie Delta is not prograding seaward but rather is undergoing transgressive shoreface erosion and drowning of distributary channel mouths. In the Olivier Islands region of the Mackenzie Delta the resultant morphology consists of a network of primary and secondary channels separated by vegetated islands. New ground is formed through channel infilling and landward-directed bar accretion. This sedimentation is characterized by seven sedimentary facies: (1) hard, cohesive silty clay at the base of primary channels which may be related to earlier, offshore deposition; (2) ripple laminated sand beds, believed to be channel-fill deposits; (3) ripple laminated sand and silt, interpreted as flood-stage subaqueous bar deposits; (4) ripple laminated or wavy bedded sand, silt and clay, representing the abandonment phase of channel-fill deposits and lateral subaqueous bar deposition from suspension settling; (5) a well sorted very fine sand bed, presumed to result from a single storm event; (6) parallel or wavy beds of rooted silt, sand and clay, interpreted as lower energy emergent bar deposits; and (7) parallel or wavy beds of rooted silt and clay, believed to represent present-day subaerial bar aggradation. The distribution of sedimentary facies can be interpreted in terms of the morphological evolution of the study area. Initial bar deposition of facies 3 and channel deposition of facies 2 was followed by lateral and upstream bar sedimentation of facies 3 and 4 which culminated with the deposition of the storm bed of facies 5. Facies 6 and 7 signify bar stabilization and abandonment. Patterned ground formed by thermal contraction and preserved in sediments as small, v-shaped sand wedges provides the most direct sedimentological indicator of the arctic climate. However, winter ice and permafrost also govern the stratigraphic development of interchannel and channel-mouth deposits. Ice cover confines flow at primary channel mouths, promoting the bypassing of sediments across the delta front during peak discharge in the spring. Permafrost minimizes consolidation subsidence and accommodation in the nearshore, further enhancing sediment bypass. Storms limit the seaward extent of bar development and promote a distinctive pattern of upstream and lateral island growth. The effects of these controls are reflected in the vertical distribution of facies in the Olivier Islands. The sedimentary succession differs markedly from that of a low-latitude delta.  相似文献   

8.
In central Wisconsin, Cambrian strata of the Elk Mound Group record deposition on open‐coast, wave‐dominated tidal flats. Mature, medium‐grained quartz arenite is dominated by parallel‐bedding with upper‐flow regime parallel‐lamination, deposited during high‐energy storms that also produced three‐dimensional bedforms on the flats. Abundant wave ripples were produced as storms waned or during fair weather, in water depths ≤2 m. Indicators of variably shallow water (washout structures and stranded cnidarian medusae) and subaerial exposure (adhesion marks, rain‐drop impressions and desiccation cracks, including cracked medusae) are abundant. Parallel‐bedded facies preserve a Cruziana ichnofacies, similar to other Cambrian tidal‐flat deposits. Flats were dissected by small, mainly straight channels, the floors of which were grazed intensely by molluscs. Most channels were ephemeral but some developed low levées, point bars and cut‐banks, probably reflecting stabilization by abundant microbial mats and biofilms. Channels were filled with trough cross‐bedding that is interpreted to have been produced mainly during storm runoff. The strata resemble deposits of open‐coast, wave‐dominated tidal flats on the east coast of India and west coast of Korea. Ancient wave‐dominated and open‐coast tidal flats documented to date appear to have been limited to mud‐rich strata with ‘classic’ tidal indicators such as flaser bedding and tidal bundles. The Cambrian (Miaolingian to early Furongian) Elk Mound Group demonstrates that sandy, wave‐dominated tidal flats also can be recognized in the stratigraphic record.  相似文献   

9.
中条山地区地质特征及铜矿床类型   总被引:3,自引:0,他引:3  
覃志安  薛克勤 《华北地质》2003,26(2):108-113
中条山地区出露的地层主要有新太古界涑水麻粒岩-角闪岩相杂岩、绛县群角闪-绿片岩岩相变质岩、古元古界中条群绿片岩相变质岩、担山石群变质砾岩-石英岩、西阳河群安山岩、沉积岩和中新元古界沉积岩。区内岩浆作用强烈,以绛县期、西阳河期火山喷发、涑水期岩浆侵入为主,火山作用为铜矿床的形成提供了大量的成矿物质。深断裂构造和褶皱构造,特别是其交汇处为成矿物质的运移和沉淀提供了空间。按成因该区铜矿床可分为次火山-火山气液再造型、远火山-沉积变质型、沉积变质型、层控热液型和热液脉型铜矿床,代表性矿床有铜矿峪、筐子沟、胡家峪、横岭关、落家河等矿庆。  相似文献   

10.
Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based facies analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These facies are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 ± 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of western Gondwana in the earliest Phanerozoic.  相似文献   

11.
马志鑫  张万平  刘伟  李波 《沉积学报》2012,30(5):787-794
东镇远地区早寒武世(相当于2008国际地层年表中的寒武纪第二世)清虚洞组发现类型丰富、特征典型的风暴沉积标志。侵蚀底面、粗粒滞留沉积、粒序层、波状层理、韵律层理等沉积组构明显,而丘状层理不发育。通过对金盆剖面和溜沙关剖面详细的野外观察及室内分析,识别出三种类型的风暴沉积序列。研究区风暴沉积的背景沉积为灰色纹层状灰岩,见波状层理、鸟眼构造等,指示潮坪环境。综合分析得出,镇远地区的风暴沉积属于潮坪风暴沉积。这丰富了湘西黔东地区早寒武世清虚洞组风暴沉积的类型。风暴沉积的发现也为研究区早寒武世位于赤道附近的低纬度区域提供了间接的证据。  相似文献   

12.
Basic types of stratification in small eolian dunes   总被引:5,自引:0,他引:5  
The thinnest recognizable strata in modern eolian dune sands can be grouped into six classes. They are herein named planebed laminae, rippleform laminae, ripple-foreset crosslaminae, climbing translatent strata, grainfall laminae, and sandflow cross-strata. Planebed laminae are formed by tractional deposition on smooth surfaces at high wind velocities. They are very rare in the deposits studied. Grainfall laminae are also formed on smooth surfaces, largely by grainfall deposition in zones of flow separation. They are much more common than planebed laminae, which they closely resemble. Eolian climbing-ripple structures are composed primarily of climbing trans-latent strata, each of which is the depositional product of a single climbing ripple. Climbing translatent strata that formed at relatively high or supercritical angles of ripple climb are typically accompanied by rippleform laminae, which are wavy layers parallel to the rippled depositional surfaces. Ripple-foreset crosslaminae, which are incomplete rippleform laminae produced when the angle of ripple climb is relatively low or subcritical, are rarely visible in eolian sands. Sandflow cross-strata are formed by the avalanching of noncohesive sand on dune slipfaces. Their form varies with slipface height and with other factors.  相似文献   

13.
The Ganga basin provides a present-day example of a peripheral foreland basin. The course of the river is controlled by Himalayan tectonics. Three main types of architectural elements, such as channels (CH), sandy bedforms (SB) and overbank fines (OF) have been developed in Ganga River sediments. The channels (CH) include gravelly (Gs) and sandy channel (Ss) lithofacies. The sandy bedforms (SB) include trough cross-stratified (St), planar cross-stratified (Sp), horizontal stratified (Sh), sandy massive (Sm) and climbing ripple cross-laminated (Sr) lithofacies, all of which are active channel deposits. The overbank fines (OF) include massive silt and clay (Fm), parallel laminated silt and clay (FI) and climbing ripple cross-laminated (Sr) lithofacies. Mega units have been developed in the lower part of the active channel deposits, while small units have been developed in the upper part of active channel deposits, in inactive channel deposits and overbank fines. This study illustrates the seasonal and tectonic control on sedimentation. Petrofacies studies of the sediments indicate a recycled orogen provenance. The sediments are derived from rapidly uplifted fault blocks comprising granite, gneiss and basic and ultrabasic rocks. Lack of textural and compositional maturity suggests a local source of derivation. The principal control on sand composition is source lithology. The hot and humid climate may slightly increase the content of quartz in sand derived from reworked foreland basin sediments. but the effect is neither sufficient to shift the sand compositions out of the recycled orogen field nor does it obscure composition mixing patterns.  相似文献   

14.
New outcrops of Middle Carboniferous glacigenic deposits found in the Guandacol Formation (western Paganzo Basin) are described in this paper. The study locality of Los Pozuelos Creek (northwestern Argentina) includes coarse-grained diamictites, rhythmites, laminated pebbly mudstones and shales that represent an expanded column of the Gondwanic glaciation in this region. Thirteen lithofacies recorded at the measured section have been grouped into three facies associations. Facies Association I is composed of coarse-grained massive and stratified diamictites (lithofacies Dmm, Dms, Dmg, Dcs), laminated siltstones with dropstones (Fld) and interstratified sandstones and mudstones (Fl, Sr). These rocks represent both tillites and resedimented diamictites closely associated to small water bodies where laminated siltstones with dropstones and stratified sandstones and mudstones were deposited. Facies Association II comprises couplets of matrix-supported thinly bedded diamictites (Dmld) and laminated mudstones with dropstones (Fld). This facies association results from the combination of three different processes, subaqueous cohesionless debris flows, coeval rainout of ice-rafted debris and settling of fine-grained particles from supension. Finally, Facies Association III is made up of laminated mudstones without dropstones, thin marl levels and scarce fine- to very fine-grained sandstones. This assemblage clearly suggests sedimentation in a deep marine environment below the wave base.The architecture of the glacigenic deposits has been investigated using photomosaic panels. The geometry of the depositional bodies and facies suggest that Los Pozuelos Creek outcrops exhibit a well preserved three-dimensional example of a grounding-line system. In particular, three different subenvironments of a morainal bank were interpreted: a bank-front, a bank-core and a bank-back. The bank-front assemblage is characterized by coarse-grained, mainly resedimented, diamictites grading laterally to prograding clinoforms composed of interbedded matrix-supported thinly bedded diamictite and mudstones. The bank-core assemblage is formed by a stacking of coarse-grained diamictites where at least five major erosional surfaces, bounding four multistory diamictite bodies, can be recognized. Finally, the bank-back assemblage corresponds to discontinuous intervals of striated lodgement till, and coarse-grained resedimented diamictites showing important post-depositional deformation. The retrogradational stacking of the morainal banks indicate an overall glacial retreat and a glacioeustatic sea-level rise. Erosional surfaces at the base of each morainal bank suggest intervening short term episodes of ice advance.The new data presented here confirm the existence of "true" tillites in western Paganzo Basin and suggest several (at least four) pulses of glacial advance and retreat during the Namurian glaciation in the region and permit a more refined interpretation of the glacial deposits in the Huaco area.  相似文献   

15.
库车盆地的早白垩世地层为一套干旱气候条件下的红层沉积,包括洪积扇砾岩、间歇性河流砂砾岩、风成细砂岩和粉砂岩、沙漠湖相紫红色泥岩等类型的沉积,组成一个较为典型的沙漠沉积体系。在库车河剖面,下白垩统红层中发育一些厚层至块状的“高能细砂岩和高能粉砂岩”,多为岩屑长石石英砂岩和长石岩屑石英砂岩。它们以良好的分选性和较高的结构成熟度、较细的粒度、较低的成分成熟度和大型交错层理的发育为特征,显示出较为明显的风成沉积特点。  相似文献   

16.
The Lower Cambrian Chilhowee Group of northeastern Tennessee consists of the Unicoi, Hampton and Erwin Formations, and is divided into four facies. The conglomerate facies occurs only within the lower 200 m of measured section (the Unicoi Formation) and consists of fine-grained to pebbly quartz wacke with rare thin beds of laminated siltstone. Low-angle to horizontally laminated, fine-grained sandstone with laminae and lenses of granules and pebbles represents upper flow-regime, overbank deposition within a braided stream system that was close to a coastline. Medium-scale, planar-tabular cross-stratified conglomerate in which megaripple bedforms are preserved is interpreted as representing deposition in interbar pools of braided channels, as flood stage waned and larger bedforms ceased to migrate. Large-scale, planar-tabular cross-stratified conglomerate beds represent migration of large transverse bars within a broad braided stream channel during high flood stage. The sandstone facies occurs throughout the Chilhowee Group, and is therefore interbedded with all other facies. It consists of mainly medium- to very coarse-grained, subarkosic to arkosic arenite. Thinly interbedded, laminated siltstone and sandstone, which may exhibit wavy or lenticular bedding, represents deposition during slack water periods between ebb and flood tides. Large-scale planar-tabular and trough cross-stratification reflects deposition within the deepest areas of subtidal channels, whereas medium-scale cross-stratification represents deposition in shallower water on shoals separating channels. Fining- and thinning-upward sequences most likely resulted from the longshore migration of channels and shoals. The hummocky facies occurs only in the Erwin Formation and consists of horizontally laminated to hummocky stratified, fine-grained arkosic to subarkosic arenite interbedded with equal amounts of bioturbated mudstone. It represents deposition between storm and fairweather wave-base by combined-flow storm currents. The quartz arenite facies is characterized by an absence of fine-grained units and lithologically consists of a super-mature, medium- to coarse-grained quartz arenite. Large-scale planar-tabular cross-stratification and abundant low-angle cross-stratification with rare symmetrical ripples (lower quartz arenite facies) occurs interbedded with the braided fluvial conglomerate facies, and was deposited within either a ridge-and-runnel system or a system of nearshore bars. Large-scale, planar-tabular cross-stratification (upper quartz arenite facies), which forms the top of two 40 m-thick coarsening-upward sequences of the type: hummocky faciessandstone faciesquartz arenite facies, probably represents deposition on sand ridges that formed on a sand-starved shelf as transgression caused the detachment and reworking of shoreface channel-shoal couplets. Palaeocurrent data for the Chilhowee Group are unimodal but widely dispersed from 0° to 180°, and exhibit a minor mode to the west. The data are interpreted to reflect the influence of longshore, tidal and storm currents. The ichnofossil assemblage changes upsection from one characterized only by Paleophycus to a Skolithos ichnofacies and finally to a Cruziana ichnofacies. The facies sequence, biogenic and palaeocurrent data reflect the interaction through time of (I) non-marine and marine processes; and (2) transgression coupled with shoreline progradation. The Chilhowee Group represents an overall deepening from terrestrial deposition to a marine shoreface that experienced both longshore and tidal currents, and finally to a storm shelf environment that periodically shoaled upward.  相似文献   

17.
The Bengal Basin, in the north-eastern part of the Indian subcontinent, contains a thick (± 22 km) early Cretaceous-Holocene sedimentary succession. The Neogene succession in the Sylhet Trough of the basin reaches a thickness of more than 6 km of which the Surma Group contains important sandstone reservoirs. Lithologically, the group consists of a succession of alternating shales, siltstones, sandy shales and sandstones, with minor conglomerates. This research work is a sedimentological analysis of the subsurface Neogene succession encountered in the petroleum exploration wells in the Sylhet Trough of the Bengal Basin. Detailed lithologic logs of the cores, based on considering texture and sedimentary structure, permit a subdivision into eight lithofacies, e.g., a shale-dominated facies, interbedded fine sandstones and mudstones, ripple-laminated sandstones, parallel-laminated sandstones, massive sandstones, cross-bedded sandstones, cross-bedded sandstones with pebble/granule lag and conglomerates. Characteristic sedimentary structures of the Surma Group, such as flaser-, wavy- and lenticular-bedding, bipolarity of ripple cross-stratification, evenly laminated sand/silt-streaked shales, reactivation surfaces within cross-bedded sandstone sets, mud-drapes on foreset laminae and herringbone cross-stratification as well as small-scale vertical sequences (several fining-upward cycles) are diagnostic for tidal influence. On the basis of the lithofacies associations and prograding character of the deposits revealed from the electrofacies associations, the Surma Group sediments have been interpreted as representing deposits of tide-dominated deltaic depositional setting.  相似文献   

18.
马槽园群是华南前寒武纪地层中的重要单元,其沉积特征及时代归属对建立和完善扬子北缘地层格架、认识和恢复当时的古地理格局有重要意义.通常认为,扬子北缘马槽园群(下部八里垭组,上部火烧尖组)是一套角度不整合于中元古界神农架群之上的新元古代磨拉石建造.取自该群下部八里垭组上部的同沉积凝灰岩样品的高精度离子探针(SHRIMP)锆石U-Pb年龄为(1165±14)Ma.该年龄数据表明,马槽园群沉积地层的形成时代应为中元古代,而不是新元古代.野外调查与沉积相分析表明,马槽园群沉积地层中滑塌包卷、正粒序等重力流沉积构造发育,主体为一套斜坡相碳酸盐岩重力流沉积,而非磨拉石建造.结合前人研究结果认为,马槽园群无论是在沉积特征还是时代归属上都不能与华南新元古代裂谷系地层进行对比,而应该属于裂谷系之下的基底地层.  相似文献   

19.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   

20.
The upper part of the Lower Cambrian succession in northeast Kangaroo Island comprises three interbedded facies associations. The fine-grained association is composed of siltstone, mudstone and minor sandstone. It contains flat lamination and abundant ripple cross-lamination which shows bipolar palaeocurrents, and occurs in combinations of flaser bedding, lenticular bedding and wavy lamination. Although body fossils are relatively rare, trilobite traces and desiccation cracks are common, and the association is interpreted as a predominantly subtidal to intertidal deposit. The conglomerate facies association contains horizontally bedded cobble to boulder conglomerate, with subordinate trough cross-stratified coarse sandstone to granule/pebble conglomerate. Fabrics and structures in the coarse conglomerates are consistent with alluvial transport (stream and debris flow), but not beach deposition. The conglomerate association is attributed to tectonic uplift and erosion of a Precambrian-Lower Cambrian succession developed adjacent to the present north coast of Kangaroo Island. Southward progradation of an alluvial fan complex occurred across east-west oriented tidal flats on which limited wave activity reworked sand and fine gravel, but not coarser material. The sandstone facies association mainly comprises trough cross-stratified and plane-laminated sandstone, the latter with current lineation predominantly sub-parallel to the east-west shoreline. Trough cross-stratification is ascribed to onshore waves and longshore currents, and current lineation to predominantly shore-parallel tidal currents, augmented by longshore drift and storm surge. Tectonic movements gave rise to cycles of transgression and regression as tidal and alluvial processes dominated alternately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号