首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1200 km-long North Anatolian Transform Fault connects the East Anatolian post-collisional compressional regime in the east with the Aegean back-arc extensional regime to the west. This active dextral fault system lies within a shear zone reaching up to 100 km in width, and consists of southward splining branches. These branches, which have less frequent and smaller magnitude earthquake activity compare to the major transform, cut and divide the shear zone into fault delimited blocks. Comparison of palaeomagnetic data from 46 sites in the Eocene volcanics from different blocks indicate that each fault-bounded block has been affected by vertical block rotations. Although clockwise rotations are dominant as expected from dextral fault-bounded blocks, anticlockwise rotations have also been documented. These anticlockwise rotations are interpreted as due to anticlockwise rotation of the Anatolian Block, as indicated by GPS measurements, and the effects of unmapped faults or pre-North Anatolian Fault tectonic events.  相似文献   

2.
《International Geology Review》2012,54(12):1557-1567
ABSTRACT

The present-day tectonic framework of Turkey comprises mainly two strike-slip fault systems, namely dextral North Anatolian and sinistral East Anatolian faults. They are considered as the main cause of deformation patterns in Anatolia. These two mega shear systems meet at Kargapazar? village of Karl?ova county. The area to the east of the junction has a transpressional tectonic regime between the Eurasian and Arabian plates and is characterized, based on field observation, by a network of faults defining a typical horsetail splay structure. The horsetail splay is interpreted as marking the termination of the North Anatolian Fault System (NAFS), which continues eastward into the Varto Fault Zone (VFZ) and then dies out. The present study reveals that the VFZ is made up of two main parts, namely the principal displacement zone (PDZ) and the transpressional splay zone (TPSZ), both characterized by the right-lateral strike-slip with reverse motion. However, the area to the east of Varto is characterized dominantly by reverse-thrust faults and E–W-trending faults as shown by focal mechanism solutions. The generation of the VFZ as a transpressional termination to the NAFS can be related directly to the block movements of the Eurasian, Anatolian, and Arabian plates.  相似文献   

3.
《Earth》2006,74(1-4):245-270
New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ∼3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post − 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast–southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.  相似文献   

4.
《Journal of Structural Geology》1999,21(8-9):1103-1108
Resolution of the `Paleomagnetic dilemma', the discrepancy between large paleomagnetically determined dextral displacement of outboard portions of the northern Cordillera, and much smaller offsets implied by mapping and stratigraphic correlations, is fundamental to understanding the tectonic evolution of the Cordillera. This paper presents structural orientation data from the middle Cretaceous Dawson Range batholith of west central Yukon and its wallrocks, and suggests that some of the `missing' displacement may be found in intrusions. The elongate northwest-trending batholith has a margin-parallel foliation, a sub-horizontal stretching lineation, and records syn-intrusive dextral shearing. In country rocks adjacent to the batholith, north-trending lineations are deflected clockwise into near parallelism with the batholith's margins; lineations from wallrock screens within the batholith are all aligned parallel with the batholith's long axis. The Big Creek strike-slip fault forms the north-margin of the batholith and accommodated a minimum of 20 km of dextral slip. These observations imply that the batholith invaded an active dextral shear zone, accommodated shearing while crystallizing, and focused post-crystallization fault development. The batholith is conservatively estimated to have accommodated 45 km of syn-intrusive shearing. Collectively, middle Cretaceous intrusions of the northern Cordillera may account for >400 km of previously unrecognized dextral displacement.  相似文献   

5.
On 21 March 2008, an Ms7.3 earthquake occurred at Yutian County, Xinjiang Uygur Autonomous Region, which is in the same year as 2008 Mw 7.9 Wenchuan earthquake. These two earthquakes both took place in the Bayar Har block, while Yutian earthquake is located in the west edge and Wenchuan earthquake is in the east. The research on source characteristics of Yutian earthquake can serve to better understand Wenchuan earthquake mechanism. We attempt to reveal the features of the causative fault of Yutian shock and its co-seismic deformation field by a sensitivity-based iterative fitting (SBIF) method. Our work is based on analysis and interpretation to high-resolution satellite (Quickbird) images as well as D-InSAR data from the satellite Envisat ASAR, in conjunction with the analysis of seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 22 km long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in the Qira County. It is characterized by distinct linear traces and a simple structure with 1–3 m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone are seen many secondary fractures and fault-bounded blocks by collapse, exhibiting remarkable extension. The co-seismic deformation affected a big range 100 km × 40 km. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. The maximum subsidence displacement is ~2.6 m in the LOS, and the maximum uplift is 1.2 m. The maximum relative vertical dislocation reaches 4.1 m, which is 10 km distant from the starting rupture point to south. The 42 km-long seismogenic fault in the subsurface extends in NS direction as an arc, and it dipping angle changes from 70° near the surface to 52° at depth ~10 km. The slip on the fault plane is concentrated in the depth range 0–8 km, forming a belt of length 30 km along strike on the fault plane. There are three areas of concentrating slip, in which the largest slip is 10.5 m located at the area 10 km distant from the initial point of the rupture.  相似文献   

6.
The Jiangshan–Shaoxing Fault Zone (JSFZ) in Zhejiang Province has been proposed to represent a suture between the Yangtze and Cathaysia blocks in South China. In this study, in-situ zircon U–Pb and Hf isotopic analysis and whole-rock major- and trace-element measurement of early to middle Cretaceous felsic rocks across the fault zone were conducted to constrain the nature of the fault zone. Twelve Cretaceous granitoid bodies were sampled from the NW and SE sides of the fault zone, respectively, with composition ranging from diorite to granite (SiO2 = 56.2–76.6 wt.%). These granitoids yielded U–Pb ages ranging from 135–100 Ma, with a systematic variation in zircon Hf isotopic compositions (εHf(t) = + 6.9 to –7.0 in the NW side vs. + 1.9 to ? 12.9 in the SE side). The TDM2 values for the granitoids from the NW side are 0.34 to 1.33 Ga, with two peaks at ca. 876 and 1170 Ma respectively, whereas those from the SE side are 0.70 to 1.62 Ga, with a single peak at ca. 1126 Ma. The Hf isotopic disparity for the two sides may indicate a fundamental difference in the lower crustal compositions of the Yangtze and Cathaysia blocks, supporting that the JSFZ is possibly a suture zone between the two blocks. Our results together with the available geological data suggest that the Mesoproterozoic materials are important for both the Yangtze and Cathaysia basement and the Neoproterozoic magmatic activities were important in the Yangtze Block, possibly related to the break-up of the Rodinia supercontinent, but less significant in the Cathaysia Block. This may imply that the two blocks have not completely juxtaposed in the Neoproterozoic.  相似文献   

7.
The Philippine Fault results from the oblique convergence between the Philippine Sea Plate and the Sunda Block/Eurasian Plate. The fault exhibits left-lateral slip and transects the Philippine archipelago from the northwest corner of Luzon to the southeast end of Mindanao for about 1200 km. To better understand fault slip behavior along the Philippine Fault, eight GPS surveys were conducted from 1996 to 2008 in the Luzon region. We combine the 12-yr survey-mode GPS data in the Luzon region and continuous GPS data in Taiwan, along with additional 15 International GNSS Service sites in the Asia-Pacific region, and use the GAMIT/GLOBK software to calculate site coordinates. We then estimate the site velocity from position time series by linear regression. Our results show that the horizontal velocities with respect to the Sunda Block gradually decrease from north to south along the western Luzon at rates of 85–49 mm/yr in the west–northwest direction. This feature also implies a southward decrease of convergence rate along the Manila Trench. Significant internal deformation is observed near the Philippine Fault. Using a two dimensional elastic dislocation model and GPS velocities, we invert for fault geometries and back-slip rates of the Philippine Fault. The results indicate that the back-slip rates on the Philippine Fault increase from north to south, with the rates of 22, 37 and 40 mm/yr, respectively, on the northern, central, and southern segments. The inferred long-term fault slip rates of 24–40 mm/yr are very close to back-slip rates on locked fault segments, suggesting the Philippine Fault is fully locked. The stress tensor inversions from earthquake focal mechanisms indicate a transpressional regime in the Luzon area. Directions of σ1 axes and maximum horizontal compressive axes are between 90° and 110°, consistent with major tectonic features in the Philippines. The high angle between σ1 axes and the Philippine Fault in central Luzon suggests a weak fault zone possibly associated with fluid pressure.  相似文献   

8.
We conducted a comprehensive 40Ar/39Ar geochronological study of the Jiali and Gaoligong shear zones to obtain a better understanding of crustal deformation and tectonic evolution around the Eastern Himalayan Syntaxis (EHS). The new age data reveal that the main phase of deformation in the Jiali and Gaoligong shear zones occurred from 22 to 11 Ma and from 18 to 13 Ma, respectively. Structural data collected during this study indicate that the Jiali shear zone underwent a change in shear sense from sinistral to dextral during its movement history. Based on a comparison with the deformation histories of other major shear zones in the region, we argue that the initial sinistral motion recorded by the Jiali shear zone was coincident with that of the Ailao Shan–Red River shear zone, which marked the northern boundary of the southeastward extrusion of the Indochina block during the Early Miocene. From the Middle Miocene (~18 Ma), the Jiali shear zone changed to dextral displacement, becoming linked with the dextral Gaoligong shear zone that developed as a consequence of continued northward indentation of the Indian continent into Asia. Since this time, the Jiali and Gaoligong shear zones have been united, defining the southwestern boundary of the EHS during clockwise rotation of the eastward-extruding Tibetan block, as revealed by recent GPS data. The temporal change in regional deformation pattern from southeastward block extrusion to clockwise rotation of crustal fragments may have played an important role in the development of the eastern Himalayan drainage system around the EHS.  相似文献   

9.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

10.
This paper investigates the age, PT conditions and kinematics of Karakorum Fault (KF) zone rocks in the NW part of the Himalaya–Karakorum belt. Granulite to greenschist facies assemblages were developed within the KF zone during strike-slip shearing. The granulites were formed at high temperature (800 °C, 5.5 kbar), were subsequently retromorphosed into the amphibolite facies (700–750 °C, 4–5 kbar) and the greenschist facies (350–400 °C, 3–4 kbar). The Tangtse granite emplaced syn-kinematically at the contact between a LT and the HT granulite facies. Intrusion occurred during the juxtaposition of the two units under amphibolite conditions. Microstructures observed within the Tangtse granite exhibit a syn-magmatic dextral S–C fabric. Compiled U–Pb and Ar–Ar data show that in the central KF segment, granulite facies metamorphism occurred at a minimum age of 32 Ma, subsequent amphibolite facies metamorphism at 20–18 Ma. Further shearing under amphibolite facies (650–500 °C) was recorded at 13.6 ± 0.9 Ma, and greenschist-facies mica growth at 11 Ma. These data give further constrains to the age of initiation and depth of the Karakorum Fault. The granulite-facies conditions suggest that the KF, accommodating the lateral extrusion of Tibet, could be at least a crustal or even a Lithosphere-scale shear zone comparable to other peri-Himalayan faults.  相似文献   

11.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

12.
The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north–south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE–SW to NW–SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.  相似文献   

13.
Western Tibet, between the Karakorum fault and the Gozha–Longmu Co fault system, is mostly internally drained and has a 1.5–2 km amplitude relief with km-large valleys. We investigate the origin of this peculiar morphology by combining a topography analysis and a study of the Cenozoic sedimentation in this area. Cenozoic continental strata correspond to a proximal, detrital fan deposition, and uncomformably rest on a palaeorelief similar to the modern one. Zircon U–Pb dating from trachytic flows interbedded within the Cenozoic continental sediments indicates that detrital sedimentation occurred at least between ca 24 and 20 Ma in the Shiquanhe basin, while K/Ar ages suggest it may have started since ~ 37 Ma in the Zapug basin. The distribution of continental deposits shows that present-day morphology features, including km-large, 1500 m-deep valleys, were already formed by Early Miocene times. We suggest that today's internally drained western Tibet was externally drained, at least during late Miocene, contemporaneously with early motion along the Karakorum Fault. Detailed study of the present day river network is compatible with a dextral offset on the Karakorum Fault of 250 km at a rate of ~ 10 ± 1 mm/yr. Displacement along the Karakorum fault possibly induced the shift from external to an internal drainage system, by damming of the Bangong Co ~ 4 Ma ago, leading to the isolation and preservation of the western Tibet relief.  相似文献   

14.
The North Anatolian Fault (NAF) is a 1200 km long dextral strike-slip fault which is part of an east-west trending dextral shear zone (NAF system) between the Anatolian and Eurasian plates. The North Anatolian shear zone widens to the west, complicating potential earthquake rupture paths and highlighting the importance of understanding the geometry of active fault systems. In the central portion of the NAF system, just west of the town of Bolu, the NAF bifurcates into the northern and southern strands, which converge, then diverge to border the Marmara Sea. At their convergence east of the Marmara Sea, these two faults are linked through the Mudurnu Valley. The westward continuation of these two fault traces is marked by further complexities in potential active fault geometry, particularly in the Marmara Sea for the northern strand, and towards the Biga Peninsula for the southern strand. Potential active fault geometries for both strands of the NAF are evaluated by comparing stress models of various fault geometries in these regions to a record of focal mechanisms and inferred paleostress from a lineament analysis. For the Marmara region, the best-fit active fault geometry consists of the northern and southern bounding faults of the Marmara basin, as the model representing this geometry better replicated primary stress orientations seen in focal mechanism data and stress field interpretations. In the Biga Peninsula region, the active geometry of the southern strand has the southern fault merging with the northern fault through a linking fault in a narrow topographic valley. This geometry was selected over the other two as it best replicated the maximum horizontal stresses determined from focal mechanism data and a lineament analysis.  相似文献   

15.
Scientists have proposed two fault systems of different ages in the Sea of Marmara: the Thrace-Eski?ehir Fault Zone of Early Miocene–Early Pliocene age and the North Anatolian Fault Zone of Late Pliocene–Recent age. Different seismicity rates and extensions of these faults onto land near ?stanbul have been suggested. One of the reasons for these differences is the contamination of seismicity catalogs by seismic events from quarries operated in ?stanbul and its vicinity, including Gaziosmanpa?a (Cebeci and Kemerburgaz), Çatalca, Ömerli, Gebze, and Hereke.In this study, we investigated waveforms of 179 seismic events (1.8 < Md < 3.0) from the KOERI, NEMC digital database. We determined differences between earthquakes and quarry blasts based on time- and frequency-domain analyses of their seismograms (amplitude peak ratio, power ratio, and spectral amplitude ratio) and used these differences as discriminants. The results of this study indicate that 15% and 85% of the investigated seismic events are earthquakes and quarry blasts, respectively.  相似文献   

16.
In active tectonic regions, shear zones play an important role in re-configuring the structure of the lithosphere. One of the largest shear zones on Earth is the Najd Fault System of the Arabian–Nubian Shield. The main active phase of this shear zone was during the last stages of the Pan-African Orogeny (ca. 630–540 Ma). Six samples of intrusive rocks that were emplaced into the shear zone at different stages during its active phase are used to illustrate the progressive evolution of the Ajjaj shear zone. A sample of coarse-grained diorite, with an intercept U–Pb zircon age of 696 ± 6 Ma, shows very weak deformation. Two samples from deformed granodiorite–tonalite intrusions at the border of the Ajjaj shear zone show conspicuous degrees of deformation, and define two U–Pb clusters of concordia ages at 747 ± 12 Ma–668 ± 8 Ma and 742 ± 5 Ma–702 ± 12 Ma. Two samples of granites show mylonitic foliation with flattened quartz and biotite parallel to the trend of the shear zone. These samples yield U–Pb ages of 601 ± 3 Ma–584 ± 3 Ma. Another granite sample is undeformed and shows cross-cutting relations with the shear foliation of the Ajjaj shear zone. It yields a concordia age of 581 ± 4 Ma. The metamorphic rocks of the Hamadat complex host the Ajjaj shear zone, and have been useful in determining the metamorphic P-T conditions attending the activity of the shear zone. The peak metamorphism of the Hamadat Complex is 505–700 °C at two ranges of pressure 8–11 and 14.5 ± 2 kbar. New data confine the activation of the Ajjaj shear zone in a limited period of time between 604 Ma and 581 Ma and the operation at different crustal levels with a maximum depth of 58 km.  相似文献   

17.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

18.
A 2000 km long dextral Talas-Fergana strike–slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar–Ar dating of micas. We also carried out a U–Pb–Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U–Pb zircon SHRIMP ages 728 ± 11 Ma and 778 ± 11 Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and their calculated tHfc ages varied from 2.42 to 2.71 Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279 ± 5 Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and calculated tHfc ages from 2.42 to 2.71 Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300–400 °C and caused resetting of the K–Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar–Ar muscovite age of 241 Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a “minimum” age of dextral motions along this section of the fault in the Triassic while younger ages varying from 227 Ma to 199 Ma with typical staircase patterns indicate protracted growth and recrystallization of micas during ductile deformations which continued until the end of the Triassic.  相似文献   

19.
Eastern Gondwana was subjected to subduction processes during the Middle-Late Jurassic, but how these processes affected intraplate deformation in eastern Australia is poorly understood. Here we present 40Ar/39Ar, K-Ar, and Rb-Sr geochronological data from illitic clay-bearing fault gouges associated with the northern part of the 200 km long, N-striking, dextral strike-slip, Demon Fault in eastern Australia. We show a major range of geochronological ages at 162.99 ± 0.74–152.1 ± 4.8 Ma, indicating that the Demon Fault was active during the Late Jurassic. This period partially coincides with the Middle-Late Jurassic deposition of widespread ash-fall tuffs in the Clarence-Moreton, Surat, and Eromanga basins. We propose that Middle-Late Jurassic intraplate tectonism in eastern Australia was influenced by subduction processes farther east, which produced extensive calc-alkaline magmatism in New Zealand from ~170 Ma. A global plate reorganisation event, related to the development of Early-Middle Jurassic sea-floor spreading of the Pacific Plate, possibly acted as the driving mechanism responsible for the intensification of magmatism and intraplate faulting in eastern Gondwana.  相似文献   

20.
In the Ribeira belt, southeastern Brazil, the Precambrian mylonitic fabric mainly formed during the Brasiliano/Pan-African orogeny (640–480 Ma) and was reactivated as fault zones in the Cretaceous and Cenozoic. The reactivation process led to the development of the System of Continental Rifts of southeastern Brazil, from the Paleogene to the Quaternary. We investigated the brittle reactivation of a mylonitic zone, which is part of a major mylonitic belt, Arcádia-Areal. We used geological and geomorphological mapping, resistivity survey, controlled source audiomagnetotelluric survey, and luminescence dating. Our results indicate that this shear zone was reactivated and formed a 15 km long and 2 km wide sedimentary-filled trough, the Rio Santana Graben. It is located on the northwest border of a major structure, the Guanabara Graben, in the State of Rio de Janeiro. The Rio Santana Graben forms an almost entirely fault-bounded, NE-elongated depression that was accommodated entirely within the Arcádia-Areal shear zone. The graben consists of two main depocenters separated by a relay ramp. The graben formed by means of multistage activity of several faults during at least two main periods. The first period formed silicified fault breccia and occurred during alkaline magmatism in the Paleogene. The second formed fault breccia and gouge in shallow conditions and occurred at least until the Quaternary. The NE-trending and NW-dipping Precambrian fabric was reactivated as dip-slip and strike-slip faults. These faults triggered clastic-sediment deposition at least 300 m thick. The upper part of the graben consists of Quaternary alluvial and colluvial sediment fill, which yielded maximum luminescence deposition ages from 49 to 13 ka in the center of the trough. An organic layer at the top of the Quaternary alluvial deposits yielded 14C ages at ~6000 years BP. The lower part of the graben may be composed of Paleogene to Neogene sedimentary deposits, which occur in other basins of the System of Continental Rifts of southeastern Brazil. We conclude that the Rio Santana Graben is an example of the direct control of a preexisting continental-scale rheological boundary on the geometry and location of fault systems and sediment deposition. Quaternary fault reactivation of the preexisting fabrics represents only the latest movement of a major structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号