首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report multi-frequency radio continuum and hydrogen radio recombination line observations of HII regions near l = 24.8°, b = 0.1° using the Giant Metrewave Radio Telescope (GMRT) at 1.28 GHz (n = 172), 0.61 GHz (n = 220) and the Very Large Array (VLA) at 1.42 GHz (n = 166). The region consists of a large number of resolved HII regions and a few compact HII regions as seen in our continuum maps, many of which have associated infrared (IR) point sources. The largest HII region at l = 24.83° and b = 0.1° is a few arcmins in size and has a shell-type morphology. It is a massive HII region enclosing ∼550 M with a linear size of 7 pc and an rms electron density of ∼110 cm−3 at a kinematic distance of 6 kpc. The required ionization can be provided by a single star of spectral type O5.5. We also report detection of hydrogen recombination lines from the HII region at l = 24.83° and b = 0.1° at all observed frequencies near V lsr = 100 km s−1. We model the observed integrated line flux density as arising in the diffuse HII region and find that the best fitting model has an electron density comparable to that derived from the continuum. We also report detection of hydrogen recombination lines from two other HII regions in the field.  相似文献   

2.
Photometry of more than 1000 bright stars of 20 associations and some fields in its vicinity is made, usingUBV plates taken with a 2-m Ritchey-Chrétien telescope of the National Observatory at the Bulgarian Academy of Sciences with limited magnitudes of about 20.6 inU andV, 21.6 inB. The colour-magnitudes of about 20.6 inU andV, 21.6 inB. The colour-magnitude and colour-colour diagrams of 12 associations and 8 fields are constructed and the brightest blue and red stars colour excesses, ages, and integrated luminosities of the associations are determined. The composite diagrams for all association and nonassociation measured stars are constructed too. Inside associations bright stars as well as non-stellar objects occur more often than outside. The brightest stars in S5 are withM v7 and do not differ considerably from the brightest ones in the spiral arm S4 of M31. Approximately the same are the absolute magnitudes of the brightest stars in our Galaxy and M33. A small difference between the brightest stars of the latter galaxy with those of M31 is possible because the stars in M33 are younger. This is in agreement with the concept that Sc galaxies (for example M33) are younger than Sb ones (for example M31). The same could be the reason for the smaller ratio of blue to red supergiants in M33 than in M31. The age estimations of the associations in S5 together with those in S4 in M31 show that they are older than the associations in M33 which is in agreement with the above mentioned concept.  相似文献   

3.
Spectra from SDSS DR5 are used for a spectral study of seven HII regions in Kazarian galaxies. The abundances of helium and heavy elements, and also the quantity of ionizing stars and the star formation rate in these galaxies, are determined. The oxygen abundance, 12+log(O/H) lies between 7.94 and 8.35. The mean abundance ratios log(S/O), log(Ar/O), and log(Ne/O) are equal to −1.63, −2.37, and −0.78, respectively. For these HII regions, log(N/O) lies between −0.63 and −1.37. On an N/O-O/H diagram they occupy the same area as high excitation HII regions. In all likelihood the ages of the HII regions studied here exceed the 100–300 million years, required for the enrichment in nitrogen by intermediate-mass stars.. The star formation rate is one order as in the HII regions of spiral and irregular galaxies and ranges from 0.05 ÷ 0.81 M. year−1. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 75–87 (February 2008).  相似文献   

4.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

5.
The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M≥100M . These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main-Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300M galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10−6 and 10−9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low-metallicity massive stars are hotter and more compact and luminous than their metal-enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have significant influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.  相似文献   

6.
The Main-Sequence positions as well as the evolutionary behavior of Population III stars up to an evolution age of 2×1010 yr, taking this time as the age of the Universe, have been investigated in the mass range 0.2 and 0.8M . While Population III stars with masses greater than 0.3M develop a radiative core during the approach to the Main Sequence, stars with masses smaller than 0.3M reach the Main Sequence as a wholly convective stars. Population III stars with masses greater than 0.5M show a brightening of at most 2.2 in bolometric magnitude when the evolution is terminated as compared to the value which corresponds to zero-age Main Sequence. The positions of stars with masses smaller than 0.5M remain almost the same in the H-R diagram.If Population III stars have formed over a range of redshifts, 6相似文献   

7.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The results of photometry and polarimetry of the R Coronae Borealis type stars and other interesting objects are given. The observation of the former objects are obtained at the light maximum or at a brightness lower by 2-3 mag. The polarization of R CrB stars at light maximum has interstellar origin. The absolute magnitude of V 854 Cen is estimated to Msvw = −3m, and for Y Mus it is Mv > −3m.7. ρ Cas has a variable polarization and is probably a giant (Mv ≅ 0m) rather than a supergiant. Many early stars in its surroundings are photometrically and polarimetrically variable. The protoplanetary star BD −0°3679 has a polarization with the Rayleigh component.  相似文献   

9.
Existing photometry for NGC 2264 tied to the Johnson & Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and a Balmer discontinuity effect in Walker's observations were detected and corrected, and the homogenized data were used in a new assessment of the cluster reddening, distance, and age. Average values of EBV = 0.075 ± 0.003 s.e. and V0MV = 9.45 ± 0.03 s.e. (d = 777 ± 12 pc) are obtained, in conjunction with an inferred cluster age of ∼5.5 × 106 yr from pre‐main‐sequence members and the location of the evolved, luminous, O7 V((f)) dwarf S Mon relative to the ZAMS. The cluster main sequence also contains gaps that may have a dynamical origin. The dust responsible for the initial reddening towards NGC 2264 is no more than 465 pc distant, and there are numerous, reddened and unreddened, late‐type stars along the line of sight that are difficult to separate from cluster members by standard techniques, except for a small subset of stars on the far side of the cluster embedded in its gas and dust and background B‐type ZAMS members of Mon OB2. A compilation of likely NGC 2264 members is presented. Only 3 of the 4 stars recently examined by asteroseismology appear to be likely cluster members. NGC 2264 is also noted to be a double cluster, which has not been mentioned previously in the literature (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present deep high dynamic range infrared images of young nearby stars in the Tucana/Horologium and β Pic associations, all ∼10 to 35 Myrs young and at ∼10 to 60 pc distance. Such young nearby stars are well‐suited for direct imaging searches for brown dwarf and even planetary companions, because young sub‐stellar objects are still self‐luminous due to contraction and accretion. We performed our observations at the ESO 3.5m NTT with the normal infrared imaging detector SofI and the MPE speckle camera Sharp‐I. Three arc sec north of GSC 8047‐0232 in Horologium a promising brown dwarf companion candidate is detected, which needs to be confirmed by proper motion and/or spectroscopy. Several other faint companion candidates are already rejected by second epoch imaging. Among 21 stars observed in Tucana/Horologium, there are not more than one to five brown dwarf companions outside of 75 AU (1.5″ at 50 pc); most certainly only ≤5% of the Tuc/HorA stars have brown dwarf companions (13 to 78 Jupiter masses) outside of 75 AU. For the first time, we can report an upper limit for the frequency of massive planets (∼10 Mjup) at wide separations (∼100 AU) using a meaningfull and homogeneous sample: Of 11 stars observed sufficiently deep in β Pic (12 Myrs), not more than one has a massive planet outside of ∼100 AU, i.e. massive planets at large separations are rare (≤9%). (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The evolutionary behaviour of rotating low-mass stars in the mass range 0.2 and 0.9M has been investigated during the pre-Main-Sequence phase. The angular momentum is conserved locally in radiative regions and totally in convective regions, according to a predetermined angular velocity distribution depending on the structure of the star. As the stars contract toward the zero-age Main Sequence, they spin up under the assumption that the angular momentum is conserved during the evolution of the stars. When the stars have differential rotations, their inner regions rotate faster than the outer regions. The effective temperatures and luminosities of rotating low-mass stars are obtained lower than those of non-rotating stars. They have lower central temperature and density values compared to those of non-rotating stars.  相似文献   

12.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

13.
The computational algorithm to determine the the proper motions of Zirconium stars on the basis of catalogues “Carte du Ciel” and on the recent photographic observations carried out with the 70cm Abastumani meniscus telescope is presented. It allowed to determine the proper motions of 288 stars in the region around α Per with a rms error of ± 0,004 arcsec/yr. Applying the method proper motions of 74 Zirconium stars and 146 control stars have been obtained. The error of proper motions obtained for the North Zone (δ > −2°) 109 AGK3 control stars is ± 0.006 arcsec/yr. On the basis of proper motins absolute magnitudes were separately calculated for the MCLPZS and LASZS. For the MCLPZS the average absolute visual magnitude at maximum, corresponding to the mean period of P = 350 days, equals −3ϕm.9. For the LASZS the mean absolute visual magnitude, corresponding to the apparent median ones equals −1ϕm.9. Low luminosity (Mv = −1ϕmϕ9) Zirconium stars escape rather far (at a distance of up to 2 kpc) to the South from the Galactic plane into the region l ∼ 240 – 260°, where its assumed to be a connection with the Large Magellanic Cloud (LMC) begins to appear. Low luminosity Zirconium stars are weakly correlated with position of the Galaxy spiral arms. The MCLPZS show a somewhat other distribution.  相似文献   

14.
Using high-quality Hα images of five spiral galaxies, we have studied the luminosity and distribution of the emission from diffuse ionized gas (DIG). The estimated DIG luminosities account for 25–60%of the total Hα emission in each galaxy and analysis of the distribution has shown that the DIG is highly correlated geometrically with the most luminous HII regions of the galaxies. The power required to ionize the DIG is very high. The mean ionization rates per unit surface area of a galaxy disc are of the order of 107 cm-2 s-1. Lyman continuum photons (Lyc) from OB asociations are the most probable sources of this ionization. Here we propose a specific model for these sources: we show that the Lyman photon flux that leaks out of the density-bounded HII regions of the galaxies is more than enough to ionize the measured DIG in the five galaxies analysed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The evolution of Population III intermediate mass stars of 5, 7, and 9M has been studied after the core He-exhaustion phase. There are two energy producing regions within the stars; one is H-burning shell and the other is He-burning shell. During the double shell burning phase, the evolution does not proceed on the asymtotic giant branch and the second dredge-up does not appear, hence, there is no change in the surface composition of the stars. The final state of these stars are important in modelling the galactic evolution.  相似文献   

16.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of the environmental dependence of u-, g-, r-, i-, and z-band luminosities between galaxies above and below the value of M r*. It turns out that in the luminous volume-limited sample, all the five band luminosities strongly correlate with local environments. Because the u-band luminosity of galaxies still strongly depends on local environments in the faint volumelimited sample, we conclude that M r* is not an important characteristic parameter for the environmental dependence of the u-band luminosity. It is worth noting that for the u-band, the subsample at low density has a higher proportion of luminous galaxies and a lower proportion of faint galaxies than the one at high density, which is opposite to widely accepted conclusion: luminous galaxies exist preferentially in the densest regions of the universe, but faint galaxies are located preferentially in low density regions. Our results show that the environmental dependence of luminosity is not a single trend in different luminosity regions and for different bands.  相似文献   

17.
Assuming the Big-Bang nucleosynthesis was responsible for the formation of helium, the evolution of first-generation intermediate-mass stars of 5, 7, and 9M with no metals have been studied from the threshold of stability through the stage of helium exhaustion in the cores of the stars. Hydrogen Main-Sequence positions are marked at effective temperatures higher than those of normal stars. The evolutionary tracks during the hydrogen burning phase start to be similar to those of normal stars when the CN-cycle reactions, which are controlled by the triple-alpha reactions, become operative for hydrogen depletion. Helium Main Sequence of Population III stars of intermediate mass occurs at the high effective temperature region of the H-R diagram and stars stay as blue stars until the end of the core helium exhaustion phase. The total time elapsed is in the range of 3×107 and 108yr. The stars with the initial masses of 5, 7, and 9M developed a moderately electron degenerate complete hydrogen-exhausted region with masses of 0.77, 1.06, and 1.42M , respectively, in which the most abundant element is carbon.  相似文献   

18.
The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [{Ba/Mg}]--[{Mg/H}] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass M ms ≤ 18 M are infertile sources and the SNe II with 20 M M ms ≤ 40 M are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20 M M ms ≤ 40 M with compared to the all massive stars is about∼ 18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproduced.  相似文献   

19.
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (VJ)0, (VH)0, and (VKs)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The stellar composition of the Tycho-2 Catalogue in the range B-V = 0· m 75–1· m 25 has been reproduced through Monte Carlo simulations. For young and old stars of the red giant clump (RGC), the red giant branch, subgiants, red dwarfs, and thick-disk giants, we have specified the distributions in coordinates, velocities, B-V, and M V as a function of B-V and calculated their reduced proper motions, photometric distances from the (B-V)-M V calibration, and photoastrometric distances from the reduced proper motion-M V calibration. Our simulations have shown the following: (1) a sample of thin-disk giants within 500 pc with an admixture of less than 10% of other stars can be produced; (2) a sample of dwarfs within 100 pc almost without any admixture of other stars can be produced; (3) the Local Spiral Arm affects the RGC composition of any magnitude-limited catalog in favor of giants younger than 2 Gyr; (4) the samples produced using reduced proper motions can be used for kinematic studies, provided that the biases of the quantities being determined are simulated and taken into account; (5) the photometric distances correlate with the photoastrometric ones because of the correlation between the proper motion and magnitude; (6) the photometric distances are closer to the true ones for the red giant branch and red dwarfs as the categories of stars with a clear (B-V)-M V relation, while the photoastrometric distances are closer to the true ones for the RGC, subgiants, and thick-disk giants; (7) the calculated distances differ systematically from the true ones, but they can be used to analyze the three-dimensional distribution of stars. Our simulations confirm the validity of our previous selection of RGC stars from Tycho-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号