首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The aim of this study was to investigate the effect of meteorite impacts on magnetic properties including magnetic susceptibility and the Verwey transition of Ti-poor titanomagnetite of volcanic rocks from the 3.6 Ma old El’gygytgyn impact structure located in the Okhotsk-Chukotka volcanic belt in north-eastern Russia. The target rocks consist mainly of rhyolite with some andesites, and is a rare example of impact structures within volcanic target rocks on Earth. 27 samples from outside the crater, the crater rim and from the depth interval 316 to 517 m below lake bottom (mblb) of the El’gygytgyn ICDP drilling were studied. A significant decrease of the average specific magnetic susceptibility by around 90% was observed between felsic volcanic rocks from the surface (18.1 × 10-6 m3/kg) and the drill cores from near the crater central uplift (1.9 × 10-6 m3/kg). Ferrimagnetic Fe-Ti oxide assemblages (Verwey transition temperature, TV: -161 to -150°C, Curie temperature, TC: 451 to 581°C), occurring in all studied samples, differ significantly. At the surface titanomaghemite is ubiquitously associated with titanomagnetite. The drill cores lack titanomaghemite, but either show a transformation into titanomagnetite and ilmenite or a strong fragmentation associated with a second TV between -172 and -188°C. Reversible curves of temperature dependence of magnetic susceptibility in the suevite indicate high depositional temperatures of at least 500°C. In the polymict and monomict impact breccia mechanical deformation of titanomagnetite and temperatures of at least 200-350°C related to the shock are suggested from temperature dependent magnetic susceptibility cycling. Lowtemperature oxidation along strongly brecciated grain surfaces in titanomagnetite is suggested to cause the lower TV and we suggest that this phenomenon is related to postimpact hydrothermal activity. The strong magnetic susceptibility decrease at El’gygytgyn is mainly influenced by shock, and post-impact hydrothermalism causes a significant additional depletion. These observations explain why magnetic lows are a ubiquitous phenomenon over impact structures.  相似文献   

5.
In-plane, dynamic soil–structure interaction (SSI) for incident-plane P and SV waves is analyzed for a two-dimensional (2D) model of a shear wall on a rigid foundation that is embedded in a soil layer over bedrock. The indirect-boundary-element method (IBEM) and non-singular Green's functions of distributed loads on inclined lines are used to solve the problem. Although this in-plane, dynamic SSI problem displays characteristics similar to those of 2D, out-of-plane, dynamic SSI, which was studied in our previous work, there exist some significant differences. In analyses of the SSI of the full-scale structures, which recorded strong earthquake shaking, our interpretations are often based on the peaks in the transfer functions of observed structural response. It is shown in this paper how the amplitudes and the frequencies of those peaks are affected by the relative rigidity and thichness of the soil layer below the foundation.  相似文献   

6.
7.
8.
This paper considers the geoecological impacts of eruptions on Karymskii Volcano and the Tokareva crater for the 1996–2008 period, which resulted in changes in (a) the relief around these edifices, (b) the discharge and composition of water in the Karymskii River and other streams in the area, and (c) the discharge and composition of gases in thermal springs. It was found that the concentration of CH4 previously had been abnormally high in free gases that emanate from the new Piipovskii Springs and an explanation is provided of the decrease in their concentration over time. We detected variations in the radon activity, OARn (Bq/m3), in free gases that are released in the Karymskii caldera hydrothermal occurrences; the variations are consistent with those in the eruptive activity of Karymskii Volcano in 2005–2006. We describe permafrost rocks in the Karymskii caldera that favor the generation of a cryolithic zone.  相似文献   

9.
Unusual (for this location) events occurred near Karymskii Volcano, Kamchatka in early January of 1996: a magnitude 6.9 earthquake, the simultaneous eruptions of two volcanoes, and the generation of extensive ground breakage. This paper is concerned with the breaks, specifically, their positions, structure, and the character of the displacements. The breaks were studied with the help of trenches that were dug across them to expose their internal structure. Crosswise profiles were constructed on some of the breaks to analyze the variation of their geometry along the strike. This work revealed the specific features of the displacement episodes and whether these episodes were multiple ones, established their sequence, and suggested a mechanism of their generation and the overall mechanism responsible for the deformation observed.  相似文献   

10.
The 13-day-long Gjálp eruption within the Vatnajökull ice cap in October 1996 provided important data on ice–volcano interaction in a thick temperate glacier. The eruption produced 0.8 km3 of mainly volcanic glass with a basaltic icelandite composition (equivalent to 0.45 km3 of magma). Ice thickness above the 6-km-long volcanic fissure was initially 550–750 m. The eruption was mainly subglacial forming a 150–500 m high ridge; only 2–4% of the volcanic material was erupted subaerially. Monitoring of the formation of ice cauldrons above the vents provided data on ice melting, heat flux and indirectly on eruption rate. The heat flux was 5–6×105 W m-2 in the first 4 days. This high heat flux can only be explained by fragmentation of magma into volcanic glass. The pattern of ice melting during and after the eruption indicates that the efficiency of instantaneous heat exchange between magma and ice at the eruption site was 50–60%. If this is characteristic for magma fragmentation in subglacial eruptions, volcanic material and meltwater will in most cases take up more space than the ice melted in the eruption. Water accumulation would therefore cause buildup of basal water pressure and lead to rapid release of the meltwater. Continuous drainage of meltwater is therefore the most likely scenario in subglacial eruptions under temperate glaciers. Deformation and fracturing of ice played a significant role in the eruption and modified the subglacial water pressure. It is found that water pressure at a vent under a subsiding cauldron is substantially less than it would be during static loading by the overlying ice, since the load is partly compensated for by shear forces in the rapidly deforming ice. In addition to intensive crevassing due to subsidence at Gjálp, a long and straight crevasse formed over the southernmost part of the volcanic fissure on the first day of the eruption. It is suggested that the feeder dyke may have overshot the bedrock–ice interface, caused high deformation rates and fractured the ice up to the surface. The crevasse later modified the flow of meltwater, explaining surface flow of water past the highest part of the edifice. The dominance of magma fragmentation in the Gjálp eruption suggests that initial ice thickness greater than 600–700 m is required if effusive eruption of pillow lava is to be the main style of activity, at least in similar eruptions of high initial magma discharge.Editorial responsibility: J. Donnelly-Nolan  相似文献   

11.
This paper concerns observations in 1980–2007 of an intracrater extrusive dome growing on Shiveluch Volcano. Information is provided on the main phases in the generation of the lava dome. The rate of growth and discharge of erupted lava are shown to vary over time. The 1980–1981 discharge was very low during the initial phase in the generation of the lava dome, not above 0.1–0.2 million cubic meters per day. When the extrusion began to grow again, the highest discharge of ejecta was recorded in 1993, as much as 1.25 million cubic meters per day. The maximum rates of growth and discharge of ejecta are generally observed during the first few months of extrusion generation following the resumption of the eruptive process. Powerful explosive eruptions that accompany the extrusive process provoke an acceleration of dome growth. The periods of explosive eruptions had discharges three orders of magnitude greater than those during the most productive extrusive periods. This nonuniformity in extrusion generation reflects nonuniformities in magma supply, and also indicates the existence of a shallow magma chamber at depths of 4–6 km.  相似文献   

12.
13.
Rock avalanches destroy and reshape landscapes in only a few minutes and are among the most hazardous processes on Earth. The surface morphology of rock avalanche deposits and the interaction with the underlying material are crucial for runout properties and reach. Water within the travel path is displaced, producing large impact waves and reducing friction, leading to long runouts. We hypothesize that the 0.2 km3 Holocene Eibsee rock avalanche from Mount Zugspitze in the Bavarian Alps overran and destroyed Paleolake Eibsee and left a unique sedimentological legacy of processes active during the landslide. We captured 9.5 km of electrical resistivity tomography (ERT) profiles across the rock avalanche deposits, with up to 120 m penetration depth and more than 34 000 datum points. The ERT profiles reveal up to ~50 m thick landslide debris, locally covering up to ~30 m of rock debris with entrained fine-grained sediments on top of isolated remnants of decametre-wide paleolake sediments. The ERT profiles allow us to infer processes involved in the interaction of the rock avalanche with bedrock, lake sediments, and morainal sediments, including shearing, bulging, and bulldozing. Complementary data from drilling, a gravel pit exposure, laboratory tests, and geomorphic features were used for ERT calibration. Sediments overrun by the rock avalanche show water-escape structures. Based on all of these datasets, we reconstructed both position and size of the paleolake prior to the catastrophic event. Our reconstruction of the event contributes to process an understanding of the rock avalanche and future modelling and hazard assessment. Here we show how integrated geomorphic, geophysical, and sedimentological approaches can provide detailed insights into the impact of a rock avalanche on a lake. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

14.
This work presents a scenario to demonstrate how a given lake (Lake Stora Kröntjärn, Sweden) would respond to changes in colour related to lumbering operations in its watershed. The questions posed are: How would lake colour values increase, for how long would such increases last and how would this influence the production and biomasses of key functional organisms in the lake? The work is based on a comprehensive lake ecosystem model, LakeWeb, which accounts for production, biomasses, predation, abiotic/biotic interactions of nine key functional groups of organisms, phytoplankton, bacterioplankton, two types of zooplankton (herbivorous and predatory), two types of fish (prey and predatory), as well as zoobenthos, macrophytes and benthic algae. The LakeWeb-model has been calibrated and critically tested using empirical data and regressions for many lakes and it can capture typical functional and structural patterns in lakes. To obtain results like these by traditional field-work in one or more lakes would be very demanding (in terms of money, persons and time). It has been shown that single tributary peaks in colour concentrations are often "drowned" in weekly mean lake values. The lumbering operations must be extensive and continue for a long time to cause significant increases in tributary colour values in order to significantly influence fundamental lake foodweb structures. This means that it is often realistic to assume that lumbering activities do not strongly influence lake foodweb structures. The LakeWeb-model with the given mass-balance model for lake colour can be a useful tool to assess situations when this might not be valid.  相似文献   

15.
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high “subsoil anisotropy” (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.  相似文献   

16.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   

17.
An invasive crayfish, Cherax quadricarinatus, and several native shrimp species (Macrobrachium acanthurus, Macrobrachium faustinum, Macrobrachium carcinus, Xiphocaris elongata, and Atyidae sp.) found in the Black River Lower Morass (BRLM), a Ramsar Wetland in Jamaica, support subsistence and artisanal fisheries. Management of this fishery requires information on factors that influence their abundance. Consequently, we assessed the effects of seasonality, extreme and double La Niña episodes (in 2011) and elevated atmospheric temperature (in 2011 and 2012) on weekly Decapoda landing data, collected over a period of two years (2010–2012). The catch of native species showed a cyclical trend every 6 months, coinciding with the dry and wet seasons. The invasive crayfish landing showed a reverse trend during the first year, after which no pattern could be discerned. A dynamic factor analysis (DFA) model with two common trends and four explanatory variables (conductivity, mean weekly number of traps hauled, weekly mean water level, and mean dissolved oxygen) was the optimal model to characterize the variation in wet-weight landings. A generalized additive mixed model with an auto-regressive moving average (ARMA) error structure was used to show that the extreme and double La Niñas were associated with lower monthly atmospheric temperature. Sea surface temperature anomaly in region 3 (a proxy to ENSO) and the trend in temperature were then used to predict the wet weight of native shrimp (U-shaped relationship) and the invasive crayfish (reverse-j shaped relationship), respectively. The native shrimp (mean sustainable yield, MSY = 3469 kg and mean catch per fisher = 2.67 kg) and invasive crayfish (MSY = 11 kg and mean catch per fisher = 0.67 kg) are under fished, although populations of the native shrimp are possibly declining, whereas that of the invasive crayfish may be growing. The declining trend may have adverse implications for the stock of the native shrimp species, which has a higher economic value, if fishing pressure is not reduced/restricted or increased on the invasive crayfish, especially during seasonal and/or ENSO related declines in native shrimp stocks.  相似文献   

18.
19.
Abstract

Abstract The Shiyang River basin is a typical interior river basin that faces water shortage and environmental deterioration in the arid northwest of China. Due to its arid climate, limited water resources and some inappropriate water-related human activities, the area has developed serious loss of vegetation, and gradual soil salinization and desertification, which have greatly impeded the sustainable development of agriculture and life in this region. In this paper, the impacts of human activities on the water–soil environment in Shiyang River basin are analysed in terms of precipitation, runoff in branches of the river, inflow into lower reaches, water conveyance efficiency of the canal system and irrigation water use efficiency in the field, replenishment and exploitation of groundwater resources, soil salinization, vegetation cover and the speed of desertification. The results show that human activities and global climate change have no significant influence on the precipitation, but the total annual runoff in eight branch rivers showed a significant decrease over the years. The proportion of water use in the upper and middle reaches compared to the lower reach was increased from 1:0.57 in the 1960s, to 1:0.27 in the 1970s and 1:0.09 in the 1990s. A reduction of about 74% in the river inflow to the lower reaches and a 15-m drop in the groundwater table have occurred during the last four decades. Strategies for improving the water–soil environment of the basin, such as the protection of the water resources of the Qilian Mountains, sustainable use of water resources, maintenance of the balance between land and water resources, development of water-saving agriculture, diverting of water from other rivers and control of soil desertification, are proposed. The objective of this paper is to provide guidelines for reconstruction of the sustainable water management and development of agriculture in this region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号