首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   

2.
This paper considers, in the context of modeling the evolution of a protoplanetary cloud, the hydrodynamic aspects of the theory of concurrent processes of mass transfer and coagulation in a two-phase medium in the presence of shear turbulence in a differentially rotating gas–dust disk and of polydisperse solid particles suspended in a carrying flow of solid particles. The defining relations are derived for diffuse fluxes of particles of different sizes in the equations of turbulent diffusion in the gravitational field, which describe the convective transfer, turbulent mixing, and sedimentation of disperse dust grains onto the central plane of the disk, as well as their coagulation growth. A semiempirical method is developed for calculating the coefficients of turbulent viscosity and turbulent diffusion for particles of different kinds. This method takes into account the inverse effects of dust transfer on the turbulence evolution in the disk and the inertial differences between disperse solid particles. To solve rigorously the problem of the mutual influence of the turbulent mixing and coagulation kinetics in forming the gas–dust subdisk, the possible mechanisms of gravitational, turbulent, and electric coagulation in a protoplanetary disk are explored and the parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particles' size distribution function is considered. This method takes into account the fact that this distribution belongs to a definite parametric class of distributions.  相似文献   

3.
An heuristic way of modeling the turbulent exchange coefficients for Keplerian accretion disks surrounding solar-type stars is considered. The formulas for these coefficients, taking into account the inverse effects of dust transfer and potential temperature on the maintenance of shear turbulence, generalize to protoplanetary gas–dust clouds the expression for the turbulent viscosity coefficient in so-called a-disks which was obtained in a classic work by Shakura and Syunyaev (1973). The defining relationships are derived for turbulent diffusion and heat flows, which describe, for the two-phase mixture rotating differentially at an angular velocity O(r, z), the dust and heat transfer in the direction perpendicular to the central plane of the disk. The regime of limiting saturation by small dust particles of the layer of “cosmic fluid” located slightly above (or below) the dust subdisk is analyzed.  相似文献   

4.
We formulate a complete system of equations of two-phase multicomponent mechanics including the relative motion of the phases, coagulation processes, phase transitions, chemical reactions, and radiation in terms of the problem of reconstructing the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence. These equations are intended for schematized formulations and numerical solutions of special model problems on mutually consistent modeling of the structure, dynamics, thermal regime, and chemical composition of the circumsolar disk at various stages of its evolution, in particular, the developed turbulent motions of a coagulating gas suspension that lead to the formation of a dust subdisk, its gravitational instability, and the subsequent formation and growth of planetesimals. To phenomenologically describe the turbulent flows of disk material, we perform a Favre probability-theoretical averaging of the stochastic equations of heterogeneous mechanics and derive defining relations for the turbulent flows of interphase diffusion and heat as well as for the “relative” and Reynolds stress tensors needed to close the equations of mean motion. Particular attention is given to studying the influence of the inertial effects of dust particles on the properties of turbulence in the disk, in particular, on the additional generation of turbulent energy by large particles near the equatorial plane of the proto-Sun. We develop a semiempirical method of modeling the coefficient of turbulent viscosity in a two-phase disk medium by taking into account the inverse effects of the transfer of a dispersed phase (or heat) on the growth of turbulence to model the vertically nonuniform thermohydrodynamic structure of the subdisk and its atmosphere. We analyze the possible “regime of limiting saturation” of the subdisk atmosphere by fine dust particles that is responsible for the intensification of various coagulation mechanisms in a turbulized medium. For steady motion when solid particles settle to the midplane of the disk under gravity, we analyze the parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particle size distribution function. This method is based on the fact that the sought-for distribution function a priori belongs to a certain parametric class of distributions.  相似文献   

5.
We developed kinetic theory for the charging processes of small dust grains near the lunar surface due to interaction with the anisotropic solar wind plasma. Once charged, these dust grains, which are exposed to the electric field in the sheath region near the lunar surface, could loft and distribute around such heights off the surface where they reach equilibrium with the local gravitational force. Analytical solutions were derived for the charging time, grain floating potential, and grain charge, characterizing the charging processes of small dust grains in a two-component and in a multi-component solar wind plasma, and further highlighting the unique features presented by the high streaming plasma velocity. We have also formulated a novel kinetic theory of sheath formation around an absorbing planar surface immersed in the anisotropic solar wind plasma in the case of a negligible photoelectric effect and presented solutions for the sheath structure. In this study we combined the results from these analyses and provided estimates for the size distribution function of dust that is expected to be lofted in regions dominated by the solar wind plasma, such as near the terminator and in nearby shadowed craters. Corresponding to the two dominant streaming velocity peaks of 300 and 800 km/s, mean dust diameters of 500 and 350 nm, respectively, are expected to be found at equilibrium at heights of relevance to exploration operations, e.g., around 1.5 m height off the lunar surface. In shadowed craters near the terminator region, where isotropic plasma should be dominating, we estimate mean lofted dust diameter of 800 nm around the same 1.5 m height off the lunar surface. The generally applicable solutions could be used to readily calculate the expected lofted size distribution near the lunar surface as a function of plasma parameters, dust grain composition, and other parameters of interest.  相似文献   

6.
We consider gravitational instability of the dust layer in the midplane of a protoplanetary disk with turbulence and shear stresses between the gas in the disk and that in the dust layer. We solve a linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation. We take into account the gas drag of solid particles (dust aggregates), turbulent diffusion and the velocity dispersion of particles, and the perturbation of the azimuthal velocity of gas in the layer upon the transfer of angular momentum from solid particles to it and from this gas to the surrounding gas in the disk. We obtain and solve the dispersion equation for the layer with the ratio of surface densities of the dust phase and gas being well above unity. The following parameters of gravitational instability in the dust layer are calculated: the critical surface density of solid matter and the Stokes number of particles corresponding to the onset of instability, the wavelength range in which instability occurs, and the rate of its growth as a function of the perturbation wavelength in the circumsolar disk at radial distances of 1 and 10 AU. We show that at 10 AU, the maximum instability growth rate increases due to the transfer of angular momentum of gas in the layer to gas outside it, a new maximum emerges at a longer wavelength, a long-wavelength instability “tail” forms, and the critical surface density initiating instability decreases relative to that determined without the transfer of angular momentum to gas outside the layer. None of these effects are observed at 1 AU, since instability in this region probably develops faster than the transfer of angular momentum to the surrounding gаs of a protoplanetary disk occurs.  相似文献   

7.
Gravitational instability of the dust layer formed after the aggregates of dust particles settle toward the midplane of a protoplanetary disk under turbulence is considered. A linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation is solved. Turbulent diffusion and the velocity dispersion of solid particles and the perturbation of gas azimuthal velocity in the layer upon the transfer of angular momentum from the dust phase due to gas drag are taken into account. Such an interaction of the particles and the gas establishes upper and lower bounds on the perturbation wavelength that renders the instability possible. The dispersion equation for the layer in the case when the ratio of surface densities of the dust phase and the gas in the layer is well above unity is obtained and solved. An approximate gravitational instability criterion, which takes the size-dependent stopping time of a particle (aggregate) in the gas into account, is derived. The following parameters of the layer instability are calculated: the wavelength range of its subsistence and the dependence of the perturbation growth rate on the perturbation wavelength in the circumsolar disk at a radial distance of 1 and 10 AU. It is demonstrated that at a distance of 1 AU, the gas–dust disk should be enriched with solids by a factor of 5–10 relative to the initial abundance as well as the particle aggregates should grow to the sizes higher than about 0.3 m in order for the instability to emerge in the layer in the available turbulence models. Such high disk enrichment and aggregate growth is not needed at a distance of 10 AU. The conditions under which this gravitational instability in the layer may be examined with no allowance made for the transfer of angular momentum from the gas in the layer to the gas in a protoplanetary disk outside the layer are discussed.  相似文献   

8.
We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic turbulence can accelerate grains through resonant as well as non-resonant interactions. We show that the magnetic compression provides higher velocities for super-Alfvénic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for submicron grains. We provide comprehensive discussion of all the possible grain acceleration mechanisms in interstellar medium. We show that supersonic velocities are attainable for Galactic dust grains. We discuss the consequence of the acceleration. The implications for extinction curve, grain alignment, chemical abundance etc. are provided.  相似文献   

9.
Isotopic analyses of meteorites suggest the possibility that some interaction between supernova ejecta and grains occurred in the solar nebula. In particular, the dynamics of grain motions in the solar nebula can explain the observed mixing of nucleosynthetic components. The effect of a shock wave on the motions of grains are examined. A steady-state, plane shock propagating into a uniform region of gas and dust grains is followed by a zone of gas/grain slip, in which the grains are accelerated by drag forces from the pre-shock to the post-shock gas velocity, i.e. reducing the relative velocity between the gas and grains to zero. On the basis of these calculations, it is estimated that if grains carried the isotopic anomalies investigated by Lee, Papanastassoiu, and Wasserburg (1978), then those grains could be no bigger than 2×10–4 cm in size. A scenario is suggested in which the sluggishness of grains provides a natural way to concentrate and mix the nucleosynthetic components carried by grains in the ejecta and in the solar nebula.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

10.
《Icarus》1987,69(1):70-82
It is shown that the dense, turbulent, decelerating shells produced by protostellar flows around young stars are a probable site for rapid grain growth by coalescing collisions. The growth of grains occurs in a thin dust layer at the leading edge of the gas shell until a critical grain size on the order of 1−10 μm is reached. Grains larger than this decouple from the turbulence and eventually reach sizes of ≈100 μm. These large grains form a thin dust shell with low-velocity dispersion, in which ultimately local gravitational instability takes place. This causes the accumulation of comet-sized aggregations of dust, assuming that the dust velocity dispersion is on the order of 10−2 m sec−1. It is proposed that the mechanism could lead to a high space density of comets in molecular clouds. The efficient formation of “giant” grains, and even comet nuclei, in the regions around young stars has important implications both for cometary astronomy and for understanding the dynamical and chemical evolution of molecular clouds and the interstellar medium.  相似文献   

11.
Recent probes of the planet Venus reveal a probable surface temperature exceeding 700K and a pressure exceeding 100 atm. A very dusty lower atmosphere may exist which is composed of micron-sized particles kept airborne by mild turbulence and a gentle circulation of deep adiabatic currents. A study of surface conditions responsible for generation and persistence of surface dust clouds is of fundamental importance in the radiative and dynamic properties of the atmosphere. Also spurious radar echoes may be caused by suspended particulate matter, thus explaining the high relief reported by radar altimeters.Equations describing transportation and deposition of dust and sand have been solved for the surface conditions of Venus. It is concluded that the minimum wind velocity for initiating grain movement is about one order of magnitude smaller than on Earth. In addition, this minimum wind velocity occurs for smaller particles on Venus than on Earth. Once the particles are raised, they can be maintained aloft for longer periods of time and over a larger size range on Venus.Surface structures such as ripples evolved from aeolian deposition are likely to be of smaller vertical dimensions but larger horizontally when compared with equivalent structures on Earth.  相似文献   

12.
Suspended dust is a dominant component of the Martian environment. It has a major influence on atmospheric circulation and it is deposited widely over the planetary surface causing a serious hazard to instrumentation. In order to study dust transport, quantification of the wind flow and dust concentration are vital. A simple laser-based anemometer system is presented that is able to measure suspended dust grain velocity and turbulence from a landed spacecraft. This system has advantages over other techniques of wind speed determination in being insensitive to contamination or atmospheric conditions such as temperature, pressure or composition. For the first time it would allow direct measurement of the suspended dust concentration on Mars. A prototype instrument has been constructed and successfully tested in a wind tunnel facility under simulated Martian conditions. The optics are simple in design, light weight and the instrument has low power consumption. It is also robust and the output signal is easily interpreted, producing only a small data volume. Future improvements will be discussed, specifically modification to measure wind direction, the possibility of obtaining information about dust grain size and the construction of a flight model.  相似文献   

13.
The irradiation of protoplanetary discs by central stars is the main heating mechanism for discs, resulting in their flared geometric structure. In a series of papers, we investigate the deep links between two-dimensional self-consistent disc structure and planetary migration in irradiated discs, focusing particularly on those around M stars. In this first paper, we analyse the thermal structure of discs that are irradiated by an M star by solving the radiative transfer equation by means of a Monte Carlo code. Our simulations of irradiated hydrostatic discs are realistic and self-consistent in that they include dust settling with multiple grain sizes  ( N = 15)  , the gravitational force of an embedded planet on the disc and the presence of a dead zone (a region with very low levels of turbulence) within it. We show that dust settling drives the temperature of the mid-plane from an   r −3/5  distribution (well mixed dust models) towards an   r −3/4  . The dead zone, meanwhile, leaves a dusty wall at its outer edge because dust settling in this region is enhanced compared to the active turbulent disc at larger disc radii. The disc heating produced by this irradiated wall provides a positive gradient region of the temperature in the dead zone in front of the wall. This is crucially important for slowing planetary migration because Lindblad torques are inversely proportional to the disc temperature. Furthermore, we show that low turbulence of the dead zone is self-consistently induced by dust settling, resulting in the Kelvin–Helmholtz instability (KHI). We show that the strength of turbulence arising from the KHI in the dead zone is  α= 10−5  .  相似文献   

14.
High-resolution numerical simulations reveal the turbulent character of the interaction zone of colliding, radiative, hypersonic flows. As the shocked gas cools radiatively, the cooled matter is squeezed into thin, high density shells. The remaining kinetic energy causes supersonic turbulence within these shells, before it is finally dissipated by internal shocks and vortex cascades. The density is far from homogeneous. High density filaments and large voids coexist. Its mean value is significantly below the stationary value. Similarly, areas with supersonic velocities are found next to subsonic regions. The mean velocity is slightly below or above the sound speed. While quasi uniform flow motions are observed on smaller scales the large scale velocity distribution is isotropic. Part of the turbulent shell is occupied by relatively uniform flow-patches, resembling coherent structures. Astronomical implications of the turbulent interaction zone are multifarious. It probably drives the X-ray variability in colliding wind binaries as well as the surprising dust formation on orbital scales in some WR-binaries. It lets us understand the knotty appearance of wind-driven structures as planetary and WR-ring nebulae, symbiotics, supernova remnants, galactic supperbubbles. Also, WR and other radiatively driven, clumpy winds, advection dominated accretion, cooling flows and molecular cloud dynamics in star-forming regions may carry its stamp This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
First results are presented of a calculation describing the collapse of a rotating dusty protostellar cloud. The dust and gas components are calculated separately, although their interaction (e.g., radiation transport, friction, etc.) is taken into account. In the early stages of the collapse the dust is dynamically unimportant. The evolution of the dust cloud is strongly influenced by dust-dust collisions: rapid sedimentation into an equatorial dust disc is found to take place as a result of accumulative dust-dust collisions and the corresponding grain growth. Treating the dust separately from the gas allows us to compare our results with solar-system cosmochemical measurements, with celestial mechanics information and to draw conclusions about the time and place of planet formation in the collapsing cloud.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

16.
Abstract– In the absence of global turbulence, solid particles in the solar nebula tend to settle toward the midplane, forming a layer with enhanced solids/gas ratio. Shear relative to the surrounding pressure‐supported gas generates turbulence within the layer, inhibiting further settling and preventing gravitational instability. Turbulence and size‐dependent drift velocities cause collisions between particles. Relative velocities between small grains and meter‐sized bodies are typically about 50 m s?1 for isolated particles; however, in a dense particle layer, collective effects alter the motion of the gas near the midplane. Here, we develop a numerical model for the coupled motions of gas and particles of arbitrary size, based on the assumption that turbulent viscosity transfers momentum on the scale of the Ekman length. The vertical distribution of particles is determined by a balance between settling and turbulent diffusion. Self‐consistent distributions of density, turbulent velocities, and radial fluxes of gas and particles of different sizes are determined. Collective effects generate turbulence that increases relative velocities between small particles, but reduce velocities between small grains and bodies of decimeter size or larger by bringing the layer’s motion closer to Keplerian. This effect may alleviate the “meter‐size barrier” to collisional growth of planetesimals.  相似文献   

17.
Guy Consolmagno 《Icarus》1979,38(3):398-410
Charged dust grains in a turbulent magnetic field will see a Lorentz force due to the convection of the solar magnetic field past them at the solar wind velocity. Since the sign of this magnetic field is randomly varying, the direction of the force will be random, and the net effect will be to randomly scatter the orbital elements of these particles. The square roots of the mean square change in semimajor axis, inclination, and eccentricity are determined as a function of the particles' original orbital elements. Particles 3 μm in radius and smaller will have their motions strongly perturbed or dominated by Lorentz scattering. This scattering will have an effect comparable to, or greater than, the Poynting-Robertson effect on these particles for time scales comparable to their Poynting-Robertson lifetimes.  相似文献   

18.
Augusto Carballido 《Icarus》2011,211(1):876-884
Numerical magnetohydrodynamic (MHD) simulations of a turbulent solar nebula are used to study the growth of dust mantles swept up by chondrules. A small neighborhood of the solar nebula is represented by an orbiting patch of gas at a radius of 3 AU, and includes vertical stratification of the gas density. The differential rotation of the nebular gas is replaced by a shear flow. Turbulence is driven by destabilization of the flow as a result of the magnetorotational instability (MRI), whereby magnetic field lines anchored to the gas are continuously stretched by the shearing motion. A passive contaminant mimics small dust grains that are aerodynamically well coupled to the gas, and chondrules are modeled by Lagrangian particles that interact with the gas through drag. Whenever a chondrule enters a region permeated by dust, its radius grows at a rate that depends on the local dust density and the relative velocity between itself and the dust. The local dust abundance decreases accordingly. Compaction and fragmentation of dust aggregates are not included. Different chondrule volume densities ρc lead to varying depletion and rimmed-chondrule size growth times. Most of the dust sweep-up occurs within ~1 gas scale-height of the nebula midplane. Chondrules can reach their asymptotic radius in 10–800 years, although short growth times due to very high ρc may not be altogether realistic. If the sticking efficiency Q of dust to chondrules depends on their relative speed δv, such that Q < 10?2 whenever δv > vstick  34 cm/s (with vstick a critical sticking velocity), then longer growth times result due to the prevalence of high MRI-turbulent relative velocities. The vertical variation of nebula turbulent intensity results in a moderate dependence of mean rimmed-chondrule size with nebula height, and in a ~20% dispersion in radius values at every height bin. The technique used here could be combined with Monte Carlo (MC) methods that include the physics of dust compaction, in a self-consistent MHD-MC model of dust rim growth around chondrules in the solar nebula.  相似文献   

19.
Radial contraction of the dust layer in the midplane of a gas–dust protoplanetary disk that consists of large dust aggregates is modeled. Sizes of aggregates vary from centimeters to meters assuming the monodispersion of the layer. The highly nonlinear continuity equation for the solid phase of the dust layer is solved numerically. The purpose of the study is to identify the conditions under which the solid matter is accumulated in the layer, which contributes to the formation of planetesimals as a result of gravitational instability of the dust phase of the layer. We consider the collective interaction of the layer with the surrounding gas of the protoplanetary disk: shear stresses act on the gas in the dust layer that has a higher orbital velocity than the gas outside the layer, this leads to a loss of angular momentum and a radial drift of the layer. The stress magnitude is determined by the turbulent viscosity, which is represented as the sum of the α-viscosity associated with global turbulence in the disk and the viscosity associated with turbulence that is localized in a thin equatorial region comprising the dust layer and is caused by the Kelvin–Helmholtz instability. The evaporation of water ice and the continuity of the mass flux of the nonvolatile component on the ice line is also taken into account. It is shown that the accumulation of solid matter on either side of the ice line and in other regions of the disk is determined primarily by the ratio of the radii of dust aggregates on either side of the ice line. If after the ice evaporation the sizes (or density) of dust aggregates decrease by an order of magnitude or more, the density of the solid phase of the layer’s matter in the annular zone adjacent to the ice line from the inside increases sharply. If, however, the sizes of the aggregates on the inner side of the ice line are only a few times smaller than behind the ice line, then in the same zone there is a deficit of mass at the place of the modern asteroid belt. We have obtained constraints on the parameters at which the layer compaction is possible: the global turbulence viscosity parameter (α < 10?5), the initial radial distribution of the surface density of the dust layer, and the distribution of the gas surface density in the disk. Restrictions on the surface density depend on the size of dust aggregates. It is shown that the timescale of radial contraction of a dust layer consisting of meter-sized bodies is two orders of magnitude and that of decimeter ones, an order of magnitude greater than the timescale of the radial drift of individual particles if there is no dust layer.  相似文献   

20.
Abstract— The COMET program is a program for the collection of micron to submicron interplanetary dust particles in low Earth orbits. Since collection takes place as the Earth crosses a given meteor stream, the particles are mainly of cometary origin. The grain remnants, located at their impact positions on high purity metallic collectors, are analysed in the laboratory for chemical and isotopical identification. The COMET-1 experiment took place in 1985 October, during encounter with the Draconid meteor stream, related to the Giacobini-Zinner comet. The fluence of extraterrestrial grains that had impacted our detectors was ~10x higher than the value of the mean meteroid fluence at ~1AU, which suggests that most of the grains originated from the Giacobini-Zinner comet. One of the most important results of their chemical analysis was that ~90% of them are enriched in low Z elements (C and O have undoubedly been identified). They could contain a CHON phase similar to that observed in the close environment of Halley's nucleus. The first imagery of the grain remnants by field emission scanning electron microscopy suggests that they are very low density aggregates still present at the impacting positions which, in most cases, are very different from the impact craters observed for the same mean relative velocity for full grains of the same size. These results show that the COMET program has constituted an important step towards the analysis of cometary material and the understanding of the evolution of the early Solar System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号