首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A data set acquired by eight particle-dedicated instruments set up on the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique, which is French for Instrumented Site for Atmospheric Remote Sensing Research) during the ParisFog field campaign are exploited to document microphysical properties of particles contributing to extinction of visible radiation in variable situations. The study focuses on a 48-hour period when atmospheric conditions are highly variable: relative humidity changes between 50 and 100%, visibility ranges between 65 and 35 000 m, the site is either downwind the Paris area either under maritime influence. A dense and homogeneous fog formed during the night by radiative cooling. In 6 h, visibility decreased down from 30 000 m in the clear-sky regime to 65 m within the fog, because of advected urban pollution (factor 3 to 4 in visibility reduction), aerosol hydration (factor 20) and aerosol activation (factor 6). Computations of aerosol optical properties, based on Mie theory, show that extinction in clear-sky regime is due equally to the ultrafine modes and to the accumulation mode. Extinction by haze is due to hydrated aerosol particles distributed in the accumulation mode, defined by a geometric mean diameter of 0.6 μm and a geometric standard deviation of 1.4. These hydrated aerosol particles still contribute by 20 ± 10% to extinction in the fog. The complementary extinction is due to fog droplets distributed around the geometric mean diameter of 3.2 μm with a geometric standard deviation of 1.5 during the first fog development stage. The study also shows that the experimental set-up could not count all fog droplets during the second and third fog development stages.  相似文献   

2.
Airborne measurements of pure Saharan dust extinction and backscatter coefficients, the corresponding lidar ratio and the aerosol optical thickness (AOT) have been performed during the Saharan Mineral Dust Experiment 2006, with a high spectral resolution lidar. Dust layers were found to range from ground up to 4–6 km above sea level (asl). Maximum AOT values at 532 nm, encountered within these layers during the DLR Falcon research flights were 0.50–0.55. A significant horizontal variability of the AOT south of the High Atlas mountain range was observed even in cases of a well-mixed dust layer. High vertical variations of the dust lidar ratio of 38–50 sr were observed in cases of stratified dust layers. The variability of the lidar ratio was attributed to dust advection from different source regions. The aerosol depolarization ratio was about 30% at 532 nm during all measurements and showed only marginal vertical variations.  相似文献   

3.
The evolution of the planetary boundary layer and the influence of local circulation phenomena over Naples (southern Italy, 40.838° N, 14.183° E, 118 m above sea level) have been studied by systematic lidar measurements of aerosol optical properties and vertical distributions carried out from May 2000 to August 2003, in the course of the EARLINET project. In particular, our data show the development of aerosol layers typically located in the range between 1,000 and 2,300 m, with variable thickness. The optical properties of the observed layers have been determined. In order to analyse the evolution of the planetary boundary layer, detailed observations of complete diurnal cycles have also been performed. The analysis of lidar measurements of vertical profiles of wind speed and wind direction and air mass back-trajectories allowed us to characterize the sea-breeze circulation influence on both the planetary boundary-layer evolution and the observed aerosol vertical distribution.  相似文献   

4.
As a component of the Canadian Arctic Haze Study, held coincident with the second Arctic Gas and Aerosol Sampling Program (AGASP II), vertical profiles of aerosol size distribution (0.17 m), light scattering parameters and cloud particle concentrations were obtained with an instrumented aircraft and ground-based lidar system during April 1986 at Alert. Northwest Territories. Average aerosol number concentrations range from about 200 cm–3 over the Arctic ice cap to about 100 cm–3 at 6 km. The aerosol size spectrum is virtually free of giant or coarse aerosol particles, and does not vary significantly with altitude. Most of the aerosol volume is concentrated in the 0.17–0.50 m size range, and the aerosol number concentration is found to be a good surrogate for the SO4 = concentration of the Arctic haze aerosol. Comparison of the aircraft and lidar data show that, when iced crystal scattering is excluded, the aerosol light scattering coefficient and the lidar backscattering coefficient are proportional to the Arctic haze aerosol concentration. Ratios of scattering to backscattering, scattering to aerosol number concentration, and backscattering to aerosol number concentration are 15.3 steradians, 1.1×10–13 m2, and 4.8×10–15 m2 sr–1, respectively. Aerosol scattering coefficients calculated from the measured size distributions using Mie scattering agree well with measured values. The calculations indicate the aerosol absorption optical depth over 6 km to range between 0.011 and 0.018. The presence of small numbers of ice crystals (10–20 crystals 1–1 measured) increased light scattering by over a factor of ten.  相似文献   

5.
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km-1 on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather.  相似文献   

6.
By using a high-speed video camera system (1000 frames s− 1) in correlation with fast and slow antenna systems, the negative cloud-to-ground (CG) flashes that struck the ground with more than one termination have been analyzed. This kind of stroke, named as multiple-ground terminations stroke (MGTS), was produced by different branches of the same stepped leader during quite a short time. Based on optical images, the 2D progression speed of leader branches was estimated to be in the range (0.9–2.0) × 105 m s− 1. The distance between adjacent striking points of MGTS was from 0.2 km to 1.9 km. The percentage of flashes with multiple-ground terminations occupied about 15% (9 out of 59) of the total negative CG flashes, with a range of 11%–20% in different areas in China. The time intervals between the two adjacent peaks ranged from 4 μs to 486 μs based on the E-field change caused by the MGTS. The flashes which had multiple striking points on the ground during quite a short time may be a common phenomenon in the lightning discharge process. It might produce more serious damage to facilities on the ground and should not be neglected in the design of lightning protection.  相似文献   

7.
As part of a series of studies on laser propagation for terrestrial free space optical (FSO) telecommunications or laser telecommunications, an experiment was conducted to determine the relationship between visibility in fog and optical attenuation (dB/km) at a laser wavelength of 1.55 μm. In the telecommunications industry, a semi-empirical equation, called the Kruse formula [Kruse, P.W., McGlauchlin, L., McQuistan, R.B., 1962. Elements of infrared technology: generation, transmission, and detection. John Wiley and Sons, New York] is typically used to calculate expected attenuation for a given meteorological visibility. The Kruse formula, however, was developed to relate meteorological visibility to optical attenuation over wavelengths from the visible to the near infrared (IR), and for dust and small particle aerosols with dimensions much smaller than the wavelength. Typically, suspended small aerosols have diameters that average about 0.1 μm while fog droplets have diameters that range upward from 2.5 μm with mean diameters that exceed 10 μm in some fogs. Therefore, application of the Kruse formula to attenuation in fog is not appropriate since fogs consist mainly of particles much larger than the laser wavelength. As part of the experiment, a transmissometer with an 85-m baseline and a dynamic range of 60 dB operated for thirteen months in an area prone to radiation fog. A commercial visibility sensor, similar to those used at airports, was located near the middle of the optical path of the transmissometer and operated over the same period. The largest attenuation measured at this site was just over 300 dB/km, corresponding to a visibility of 32 m. The key finding of the study is that the generally accepted Kruse formula relating visibility and optical attenuation may be too pessimistic at low visibilities, and actual attenuation values for a given visibility may be more than 20% lower than previously thought. At visibilities exceeding about 650 m, the Kruse formula gives a good estimate of optical attenuation.  相似文献   

8.
In November 1993 an airborne field study was performed in order to investigate the microphysical and radiative properties of cooling tower water clouds initiated by water vapour emissions and polluted by the exhaust from coal-fired power plants. The number-median diameter of the droplet size distributions of these artificial clouds was in the range of 13 μm. The concentration of smaller droplets (diameters dD < 10 μm) increased with height and horizontal distance from the cooling towers. Close to the cooling towers, bimodal spectra were found with a second mode at 19 μm. The liquid water content (LWC) ranged between 2 and 5 g/m3 and effective droplet radii (Re) between 6 and 9 μm were measured. LWC and Re decreased with altitude, whereas the droplet concentration (ND) remained approximately constant (about 2000 cm−3 ). An enrichment of interstitial aerosol particles with particle diameters (dp) smaller 0.2 μm compared to the power plant plume in the vicinity of the clouds was observed. Particle activation for dm > 0.3 μm. was evident, especially in cooling tower clouds further apart and separated from their sources. Furthermore, radiation measurements were performed, which revealed differences in the vertical profiles of downwelling solar and UV radiation flux densities inside the clouds.The effective droplet radius Re was parameterized in terms of LWC and ND using equations known from literature. The close agreement between measured and parameterized Re indicates a similar coupling of Re, LWC and ND as in natural clouds.By means of Mie calculations, volume scattering coefficients and asymmetry factors are derived for both the cloud droplets and the aerosol particles. For the cloud droplets, the optical parameters were described by parameterizations from the literature. The results show, that the link between radiative and microphysical properties of natural clouds is not changed by the extreme pollution of the artificial clouds.  相似文献   

9.
The nocturnal structure of the lower troposphere is studied using aerosol profile data (50–2800 m AGL) obtained with a bistatic, continuous wave, Argon ion lidar system during October 1986–September 1989 at Pune (18°32 N, 73°51 E, 559m AMSL), India. The top of the nocturnal groundbased inversion is taken as the height above ground where the negative vertical gradient in aerosol concentration first reaches a maximum. During the post-sunset period over this station, this height is as low as 160m and frequently lies around 550m. Greater heights are observed in pre-monsoon months and smaller ones during the southwest monsoon season. Positive vertical gradients in aerosol concentration, indicative of stable/elevated layers, appear frequently around 750m. Temporal variations of aerosol concentration gradients in two adjacent air layers, 920–1000m and 100–1100m, provide evidence that stability increases downward in the early night hours.  相似文献   

10.
Multiple‐angle micro‐pulse lidar (MPL) observations were made at Las Galletas on Tenerife, Canary Islands during the Aerosol Characterization Experiment‐2 (ACE‐2) conducted June–July, 1997. A principal objective of the MPL observations was to characterize the temporal/spatial distributions of aerosols in the region, particularly to identify and profile elevated Saharan dust layers which occur intermittently during the June–July time period. Vertical and slant angle measurements taken 16 and 17 July characterize such an occurrence, providing aerosol backscatter, extinction, and optical depth profiles of the dust layer between 1 and 5 km above mean sea level (MSL). Additionally, horizontal measurements taken in Las Galletas throughout the 6‐week period provide a time profile of the varying aerosol extinction at the surface. This profile exhibits the alternating periods of clean maritime air and pollution outbreaks that typified the region. Horizontal measurements also provide some evidence suggesting the possible influx of Saharan dust from the free troposphere to the surface. This paper presents estimates of aerosol optical properties retrieved from the multi‐angle MPL measurements in addition to an outline of the methodologies employed to obtain these results.  相似文献   

11.
《Atmospheric Research》2005,73(3-4):173-201
We summarise the microphysical and optical parameters of some principal aerosol species obtained by instrumentation on the UK Met Office C-130 aircraft during international field campaigns since 1996. The aerosol species include Saharan dust, biomass burning aerosol, European continental pollution, eastern seaboard USA pollution, and clean maritime aerosol. The typical structure of the aerosol in the vertical from each airmass type is described. Microphysical parameters are described that comprise the mode radius and geometric standard deviation associated with 2–3 lognormal fits to the mean observed aerosol size distributions spanning the accumulation and coarse modes. Optical parameters comprising the aerosol single scattering albedo (which was both measured and derived from Mie theory), specific extinction coefficient, and asymmetry factor (which were derived from Mie theory) are also presented. Where available, evolution of the physical and optical properties of the aerosol has been highlighted. Comparisons with long-term ground-based AERONET aerosol retrievals show reasonable agreement. Our observations provide useful data for validating and improving global circulation models (GCMs) that use physically based aerosol representation and for validating satellite retrievals of the physical and optical properties of aerosols.  相似文献   

12.
The average composition and seasonal variations of atmospheric organic particulates with respect to n-alkanes, n-alkanoic acid, polycyclic aromatic hydrocarbon (PAHs), and nitrated polycyclic aromatic hydrocarbons (N-PAHs) were determined at the biggest municipal waste landfill in Algeria located in Oued Smar, 13 km east of downtown Algiers. Samplings were carried out from August 2002 to February 2003, and organic compounds adsorbed in air particles having an aerodynamic diameter lower than 10 μm (PM10) were characterized using gas chromatography coupled with mass spectrometric detection (GC/MSD). Total concentrations ranged from 828 to 11,068 ng per cubic meter of air for n-alkanes, from 1714 to 21,710 ng per cubic meter of air for n-alkanoic acids, from 13 to 212 ng per cubic meter of air for PAHs and from 93 to 205 pg per cubic meter of air for N-PAHs. n-Alkanoic acids accounted for 85 and 56% of the total organic composition of the aerosol measured in summer and winter, respectively, were the biggest fraction. The distribution profiles and the diagnostic ratios of some marker compounds allowed to identify the combustion and microbial activity as the major sources of particulate organic pollutants associated with direct emission. The year-time dependence of organic fraction content of aerosol in Oued Smar appeared to be related to average meteorological conditions as well as variability of rate and nature of materials wasted into the landfill.  相似文献   

13.
The main objective of this study is to investigate the chemical characteristics of biomass burning aerosol and its impact on regional air quality during an agricultural waste burning period in early summer in the rural areas of Korea. A 12-h integrated intensive sampling of biomass burning aerosol in the fine and coarse modes was conducted on 2–20 June 2003 in Gwangju, Korea. The collected samples were analyzed for concentrations of mass, ionic, elemental, and carbonaceous species. Average concentrations of fine and coarse mass were measured to be 67.9 and 18.7 μg m− 3 during the biomass burning period, 41.9 and 18.8 μg m− 3 during the haze period, and 35.6 and 13.3 μg m− 3 during the normal period, respectively. An exceptionally high PM2.5 concentration of 110.3 μg m− 3 with a PM2.5/PM10 ratio of 0.79 was observed on 6 June 2003 during the biomass burning period. The potassium ratio method was used to identify biomass burning samples. The average ratio of potassium in the fine mode to the coarse mode (FK/CK) was 23.8 during the biomass burning period, 6.0 during the haze period, and 4.7 during the normal period, respectively. A FK/CK ratio above 9.2 was considered a criterion for biomass burning event in this study. Particulate matter from the open field burning of agricultural waste has an adverse impact on visibility, human health, and regional air quality.  相似文献   

14.
A vertically inhomogeneous mid-latitude mixed-phase altocumulus cloud was observed around 17:26 UTC on Oct. 14, 2001 during the 9th Cloud Layer Experiment (CLEX9). In this study the microphysical and optical properties of this cloud are investigated on the basis of in-situ observed vertical profiles of particle size and habit distributions. Two cloud models, assuming that the cloud properties were vertically homogeneous and inhomogeneous, are adopted to derive the bulk optical and radiative properties of this cloud. The observed microphysical properties are combined with the theoretical solutions to the scattering and absorption properties of individual cloud particles to determine the bulk optical properties at various heights within the cloud layer. The single-scattering properties of spherical liquid water droplets and nonspherical ice crystals are obtained from the Lorenz–Mie theory and an existing database, respectively. The bulk microphysical and optical properties associated with the inhomogeneous model depend strongly on the height above the cloud-base whereas the dependence is smoothed out in the case of the homogeneous model. Furthermore, the transfer of infrared radiation is simulated in conjunction with the two cloud models. It is shown that the brightness temperatures at the top of the atmosphere in the case of the homogeneous model can be 1.5% (3.8 K) higher than their counterpart associated with the inhomogeneous cloud model. This result demonstrates that the effect of the vertical inhomogeneity of a mixed-phase cloud on its radiative properties is not negligible.  相似文献   

15.
Measurements of the small-, intermediate-, and large-ion concentrations and the air–earth current density along with simultaneous measurements of the concentration and size distribution of aerosol particles in the size ranges 4.4–163 nm and 0.5–20 μm diameter are reported for a drifting snow period after the occurrence of a blizzard at a coastal station, Maitri, Antarctica. Ion concentrations of all categories and the air–earth current simultaneously decrease by approximately an order of magnitude as the wind speed increases from 5 to 10 ms− 1. The rate of decrease is the highest for large ions, lowest for small ions and in-between the two for intermediate ions. Total aerosol number concentration decreases in the 4.4–163 nm size range but increases in the 0.5–20 μm size range with wind speed. The size distribution of the nanometer particles shows a dominant maximum at ~ 30 nm diameter throughout the period of observations and the height of the maximum decreases with wind speed. However, larger particles show a maximum at ~ 0.7 μm diameter but the height of the maximum increases with increasing wind speed. The results are explained in terms of scavenging of atmospheric ions and aerosols by the drifting snow particles.  相似文献   

16.
The effect of clouds on aerosol growth in the rural atmosphere   总被引:1,自引:0,他引:1  
Measurements of accumulation mode aerosol in the atmospheric boundary layer under cloudy and cloud-free conditions, and in the lower free troposphere under cloud-free conditions, were conducted over the rural northwest of England. Normalised size distributions in the cloud-free boundary layer (CFBL) and the cloud-free free troposphere (CFFT) exhibited almost identical spectral similarities with both size distributions possessing a concentration peak mode-radius of ≈0.05 μm or less. By comparison, aerosol distributions observed in cloudy air exhibited a distinctive log-normal distribution with mode-radii occurring at ≈0.1 μm concomitant with a local minimum at ≈0.05 μm. The consistent and noticeable difference in spectral features observed between cloudy and cloud-free conditions suggest that a greater amount of gas-to-particle conversion occurs on cloudy days, presumably through in-cloud aqueous phase oxidation processes, leading to larger sized accumulation mode particles. Apart from the distinct difference between cloudy and cloud-free aerosol spectra on cloudy days, aerosol concentration and mass were observed to be significantly enhanced above that of the ambient background in the vicinity of clouds. Volatility analysis during one case of cloud processing indicated an increase in the relative contribution of aerosol mass volatile at temperatures characteristic of sulphuric acid, along with a smaller fraction of more volatile material (possibly nitric acid and/or organic aerosol). Growth-law analysis of possible growth mechanisms point to aqueous phase oxidation of aerosol precursors in cloud droplets as being the only feasible mechanism capable of producing the observed growth. The effect of cloud processing is to alter the cloud condensation nuclei (CCN) supersaturation spectrum in a manner which increases the availability of CCN at lower cloud supersaturations.  相似文献   

17.
利用激光雷达观测兰州沙尘气溶胶辐射特性   总被引:11,自引:3,他引:8       下载免费PDF全文
曹贤洁  张镭  周碧  鲍婧  史晋森  闭建荣 《高原气象》2009,28(5):1115-1120
利用微脉冲激光雷达CE370-2与太阳光度计CE-318, 在兰州观测分析了2007年3月27~29日扬沙过程沙尘气溶胶辐射特性, 并利用HYSPLIT-4模式分析了沙尘过程气溶胶粒子的后向轨迹。分析表明, 此沙尘过程气溶胶粒子的传输路径主要有两条: 一条起源于青海西北经西宁抵兰州, 另一条起源于塔克拉玛干沙漠经河西走廊抵兰州; 沙尘气溶胶主要集中于离地1.5 km高度层内; 沙尘气溶胶消光系数随高度先增加, 到0.2 km左右高度达到最大, 然后急剧减小。沙尘气溶胶光学厚度的时间演变呈双峰型, 最高峰出现在28日12:00, 次高峰在27日22:00。验证表明由CE370-2得到的气溶胶光学厚度与CE-318得到的很接近; 雷达观测资料的处理方法可以较好地反演气溶胶消光系数和光学厚度。  相似文献   

18.
Functional relationships linking at λ0=351 nm aerosol extinction αλ0aer and backscatter coefficient βλ0aer of maritime and desert type aerosols are determined to allow for inversion of the single-wavelength lidar signals. Such relationships are derived as mean behavior of 20,000 extinction versus backscatter computations, performed for aerosol size distributions and compositions whose describing parameters are randomly chosen within the naturally observed variability. For desert-type aerosols, the effect of the particle non-sphericity is considered and it is shown that the extinction to backscatter ratio of non-spherical dust particles can be up to 60% larger than the values obtained for spherical particles. Aerosol extinction and backscatter coefficient profiles obtained inverting the single-wavelength lidar signal with the modeled relationships are then compared to the same profiles measured by a combined elastic-Raman lidar operating at 351 nm. Analytical back trajectories and satellite images are used to characterize advection patterns during lidar measurements and to properly choose the modeled functional relationship. A good accordance between the two techniques is found for advection patterns over the lidar site typical of maritime and dust conditions. Maximum differences between the model-based αλ0aer and βλ0aer vertical profiles and the corresponding ones measured by the combined elastic-Raman lidar technique are of 30% and 40% in maritime and desert dust conditions, respectively. The comparison of elastic-Raman lidar measurements and model-based results also reveals that particle non-sphericity must be taken into account when mineral dust-type aerosols are directly advected over the measurement site.  相似文献   

19.
The aerosol optical depth of the atmospheric boundary layer was determined both from direct solar irradiance measurements and from vertical extrapolation of ground-based nephelometry, during a period with cloudless skies and high aerosol mass loadings in the Netherlands. The vertical profile of the aerosol was obtained from lidar measurements. From humidity controlled nephelometry at the ground and humidity profiles from soundings, the scattering aerosol extinction as a function of height was assessed. Integration of the extinction over the aerosol layer gave the aerosol optical depth of the atmospheric boundary layer. This optical depth at the narrow band of the nephelometer was translated to a spectrally integrated value, assuming an Angstrom wavelength exponent of 1.5, a typical value for The Netherlands.It was found that scattering by the boundary layer aerosol contributed on average 80% to the total atmospheric aerosol optical depth. The uncertainty in this value is estimated to be of the order of 13%. Ammonium nitrate dominated the light scattering. This is an anthropogenic aerosol component.The radiative forcing caused by the light scattering of the anthropogenic aerosol was calculated assuming an upward scattered fraction of 0.3. An average value of − 12 W m −2 was found (with an estimated uncertainty of 20%). This corresponds to an absolute increase in the planetary albedo of 0.03, which is equivalent to a 15% increase in the local planetary albedo of 0.2.  相似文献   

20.
In this paper, characterization of cirrus clouds are made by using data from ground based polarization lidar and radiosonde measurements over Chung-Li (24.58°N, 121.10°E), Taiwan for a period of 1999–2006. During this period, the occurrence of cirrus clouds is about 37% of the total measurement nights over the lidar site. Analysis of the measurement gives the statistical characteristics about the macrophysical properties such as occurrence height, ambient temperature, and its geometrical thickness while the microphysical properties are interpreted in terms of extinction coefficient, optical depth, effective lidar ratio and depolarization ratio. The effective lidar ratio has been retrieved by using the simulation technique of backscattered lidar signals. The effect of multiple scattering has been taken into the account by a model calculation. Summer (Jun–Aug) shows the maximum appearances of cirrus due to its formation mechanism. It is shown that tropopause cirrus clouds may occur with a probability of about 24%. These clouds are usually optically thin and having laminar in structure with some cases resembling the characteristics similar to that of polar stratospheric clouds (PSCs). The radiative properties of the cirrus clouds are also discussed in detail by the empirical equations with results show a positive feedback on any climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号