首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study motions of galaxies in galaxy clusters formed in the concordance Λ cold dark matter cosmology. We use high-resolution cosmological simulations that follow the dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing the motions of galaxies and the properties of intracluster gas in a sample of eight simulated clusters at z = 0, we study the velocity dispersion profiles of the dark matter, gas and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ≈1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient in our simulations. We also find that galaxies move slightly faster than the dark matter particles. The magnitude of the velocity bias,   b v ≈ 1.1  , is, however, smaller than the bias estimated for subhaloes in dissipationless simulations. Interestingly, we find velocity bias in the tangential component of the velocity dispersion, but not in the radial component. Finally, we find significant random bulk motions of gas. The typical gas velocities are of order ≈20–30 per cent of the gas sound speed. These random motions provide about 10 per cent of the total pressure support in our simulated clusters. The non-thermal pressure support, if neglected, will bias measurements of the total mass in the hydrostatic analyses of the X-ray cluster observations.  相似文献   

2.
Environment plays an important role in the evolution of the gas contents of galaxies. Gas deficiency of cluster spirals and the role of the hot intracluster medium in stripping gas from these galaxies is a well-studied subject. Loose groups with diffuse X-ray emission from the intragroup medium (IGM) offer an intermediate environment between clusters and groups without a hot IGM. These X-ray bright groups have smaller velocity dispersion and lower temperature than clusters, but higher IGM density than loose groups without diffuse X-ray emission. A single-dish comparative study of loose groups with and without diffuse X-ray emission from the IGM, showed that the galaxies in X-ray bright groups have lost more gas on average than the galaxies in non X-ray bright groups. In this paper we present GMRT H  i observations of 13 galaxies from four X-ray bright groups: NGC 5044, 720, 1550 and IC1459. The aim of this work is to study the morphology of H  i in these galaxies and to see if the hot IGM has in any way affected their H  i content or distribution. In addition to disturbed H  i morphology, we find that most galaxies have shrunken H  i discs compared to the field spirals. This indicates that IGM-assisted stripping processes like ram pressure may have stripped gas from the outer edges of the galaxies.  相似文献   

3.
I review the processes that govern the amount and the thermal state of the hot plasma pervading clusters and groups of galaxies: the gravitational heating driven by the DM merging histories, the radiative cooling of baryons, and the energy fed back by SNe and by AGNs or quasars. I argue that the X-ray emissions and the entropy levels now observed from clusters to groups require the AGNs to contribute substantially to preheat the gas before it falls into clusters, and the quasars to blow some plasma out of groups and galaxies.  相似文献   

4.
Ram-pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram pressure and the ram-pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram pressures that are likely to cause an expedient loss of all gas. Strong ram pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion on to a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram pressures of  >10−11 dyn cm−2  which most likely led to a substantial loss of the gas.  相似文献   

5.
The galaxy population in rich local galaxy clusters shows a ratio of one quarter elliptical galaxies, two quarters S0 galaxies, and one quarter spiral galaxies. Observations of clusters at redshift 0.5 show a perspicuously different ratio, the dominant galaxy type are spiral galaxies with a fraction of two quarters while the number of S0 galaxies decreases to a fraction of one quarter (Dressler et al. 1997). This shows an evolution of the galaxy population in clusters since redshift 0.5 and it has been suspected that galaxy transformation processes during the infall into a cluster are responsible for this change. These could be merging, starburst or ram-pressure stripping. We use our evolutionary synthesis models to describe various possible effects of those interactions on the star formation of spiral galaxies infalling into clusters. We study the effects of starbursts of various strengths as well as of the truncation of star formation at various epochs on the color and luminosity evolution of model galaxies of various spectral types. As a first application we present the comparison of our models with observed properties of the local S0 galaxy population to constrain possible S0 formation mechanisms in clusters. Application to other types of galaxies is planned for the future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Nuclear stellar clusters are a common phenomenon in spirals and in starburst galaxies, and they may be a natural consequence of the star formation processes in the central regions of galaxies. HST UV imaging of a few Seyfert 2 galaxies have resolved nuclear starbursts in Seyfert 2 revealing stellar clusters as the main components of the extended emission. However, we do not know whether stellar clusters are always associated with all types of nuclear activity. We present HST NUV and optical images to study the role that stellar clusters play in different types of AGNs. Also with these images, we study the circumnuclear dust morphology as a probe of the circumnuclear environment of AGNs.  相似文献   

7.
Different compositions of galaxy types in the field in comparison to galaxy clusters as described by the morphology–density relation in the local universe are interpreted as a result of transformation processes from late- to early-type galaxies. This interpretation is supported by the Butcher–Oemler effect. We investigate E+A galaxies as an intermediate state between late-type galaxies in low-density environments and early-type galaxies in high-density environment to constrain the possible transformation processes. For this purpose, we model a grid of post-starburst galaxies by inducing a burst and/or a halting of star formation on the normal evolution of spiral galaxies with our galaxy evolution code galev . From our models, we find that the common E+A criteria exclude a significant number of post-starburst galaxies, and propose that comparing their spectral energy distributions leads to a more sufficient method to investigate post-starburst galaxies. We predict that a higher number of E+A galaxies in the early universe cannot be ascribed solely to a higher number of starburst, but is a result of a lower metallicity and a higher burst strength due to more gas content of the galaxies in the early universe. We find that even galaxies with a normal evolution without a starburst have an Hδ-strong phase at early galaxy ages.  相似文献   

8.
本文在星系有偏袒形成的冷暗物质模型框架下,假定星系都在红移~5时形成,研究了星系群和星系团的形成对星系演化的影响。由示冷暗物质模型中各种不同尺度扰动的幅度相近,星系群和星系团的维里化与星系的维里化在时间上比较接近,在星系群或星系团的维里化过程中获得巨大维里速度的星系仍然富有气体,因此,当它们因为频繁的互相碰撞,或者因为进入星系团中心区的稠密星系际介质受到巨大冲压,或者是被附近射电星系的喷流所产生的高压茧状体所包容,都可能激发活动性,造成恒星的爆发性形成.高红移星系团中观测到的B-O效应和高红移射电星系的光学像与射电喷流同轴向现象都可以据此得到解释.  相似文献   

9.
At the faint end of the deepest X-ray surveys, a population of X-ray luminous galaxies is seen. In this paper, we present the results of a cross-correlation between the residual, unresolved X-ray photons in a very deep X-ray survey and the positions of faint galaxies, in order to examine the importance of these objects at even fainter flux levels. We measure a significant correlation on all angular scales up to ∼1 arcmin. This signal could account for a significant fraction of the unresolved X‐ray background, approximately 35 per cent if the clustering is similar to optically selected galaxies. However, the angular form of the correlation is seen to be qualitatively similar to that expected for clusters of galaxies and the X-ray emission could be associated with hot gas in clusters or with QSOs within galaxy clusters rather than emission from individual faint galaxies. The relative contribution from each of these possibilities cannot be determined with the current data.  相似文献   

10.
The structures of compact groups of galaxies are compared with the structures of rich clusters of galaxies. It was established that there are structural similarities between these two types of clusters of galaxies. It is imaginable that these structures are typical for all such complexes of galaxies and that the different structures are due to different initial conditions at the beginning of their evolution. For a final answer on this question it is necessary to accumulate more observational material with respect to the distribution of galaxies in such clusters. As part of a larger programme the present paper contains the derived number-density distributions and core radii for ten clusters.  相似文献   

11.
It is difficult to detect X-ray emission associated with galaxies in rich clusters, because the X-ray images of the clusters are dominated by the emission from their hot intracluster media (ICM). Only the nearby Virgo cluster provides us with information about the X-ray properties of galaxies in clusters. Here we report on the analysis of a deep ROSAT HRI image of the moderately rich cluster Abell 2634, by which we have been able to detect the X-ray emission from the galaxies in the cluster. The ICM of Abell 2634 is an order of magnitude denser than that of the Virgo cluster, and so this analysis allows us to explore the X-ray properties of individual galaxies in the richest environment yet explored.
By stacking the X-ray images of the galaxies together, we show that the emission from the galaxies appears to be marginally resolved by the HRI. This extent is smaller than for galaxies in poorer environments, and is comparable to the size of the galaxies in optical light. These facts suggest that the detected X-ray emission originates from the stellar populations of the galaxies, rather than from extended hot interstellar media. Support for this hypothesis comes from placing the optical and X-ray luminosities of these galaxies in the LB–LX plane: the galaxies of Abell 2634 lie in the region of this plane where models indicate that all the X-ray emission can be explained by the usual population of X-ray binaries. It is therefore probable that ram pressure stripping has removed the hot gas component from these galaxies.  相似文献   

12.
Rich and massive clusters of galaxies at intermediate redshift are capable of magnifying and distorting the images of background galaxies. A comparison of different mass estimators among these clusters can provide useful information about the distribution and composition of cluster matter and its dynamical evolution. Using the hitherto largest sample of lensing clusters drawn from the literature, we compare the gravitating masses of clusters derived from the strong/weak gravitational lensing phenomena, from the X-ray measurements based on the assumption of hydrostatic equilibrium, and from the conventional isothermal sphere model for the dark matter profile characterized by the velocity dispersion and core radius of galaxy distributions in clusters. While there is excellent agreement between the weak lensing, X-ray and isothermal sphere model-determined cluster masses, these methods are likely to underestimate the gravitating masses enclosed within the central cores of clusters by a factor of 2–4 as compared with the strong lensing results. Such a mass discrepancy has probably arisen from the inappropriate applications of the weak lensing technique and the hydrostatic equilibrium hypothesis to the central regions of clusters, as well as from assuming an unreasonably large core radius for both luminous and dark matter profiles. Nevertheless, it is pointed out that these cluster mass estimators may be safely applied on scales greater than the core sizes. Namely, the overall clusters of galaxies at intermediate redshift can still be regarded as the dynamically relaxed systems, in which the velocity dispersion of galaxies and the temperature of X-ray emitting gas are good indicators of the underlying gravitational potentials of clusters.  相似文献   

13.
赵君亮 《天文学进展》2007,25(3):206-214
对星系团各类分层效应的有关问题做了概要的评述,包括成员星系在位置空间和(或)速度空间中的形态分层、光度(质量)分层和元素丰度分层的表现形式和探测途径,分层效应可能的形成机制及其对星系和星系团的结构和演化的影响。  相似文献   

14.
It is well known that galaxies accumulating large quantities of gas undergo violent bursts of star formation. This is believed to be due to tidal interactions of galaxies leading to the infall of gas into their central regions. Bursts of star formation in this scenario are transitory phenomena and can be induced only by external sources.However, in some cases there is no direct evidence of tidal interactions in starburst galaxies.We discuss another possibility of bursting phenomena in galaxies connected with nonlinear feedback processes in mass-exchange between components of star-forming region. We consider a three-component model including cold clouds, warm gas and massive stars and take into account the delay processes in the transformation of hot gas ejected by massive stars and evaporated from cold phase, into the warm phase. Self-regulating mechanism of phase transition of small clouds into warm gas due to heating radiation of massive stars is also taken into account.The analysis of stability of the system shows that it could be unstable even in case of a small efficiency in the birth of massive stars. The evolution of unstable nonlinear perturbations leads to the development of self-sustained nonlinear oscillations of star formation.  相似文献   

15.
Clusters of galaxies in which radio emission at low frequencies (178 MHz) has been detected were classified on the Bautz-Morgan (BM) system according to the dominance of the brightest galaxy. Radio sources with steep low-frequency spectra occur in clusters of all BM types but more often in rich clusters; the distributions of BM types for clusters with high and low spectral indices between 38 and 178 MHz are similar. Glass copies of Mount Palomar Sky Survey plates were measured to determine the distribution of the ten brightest galaxies in clusters without dominant galaxies. Some clusters were found to have central cores of bright galaxies which may reflect mass segregation of galaxies due to dynamical friction. The bright galaxies in such cores may later merge to form dominant cD galaxies. The positions of the cD galaxies and cores of bright galaxies are often at projected distances <200 kpc from the low-frequency radio emission. The low-frequency spectrum of radio emission associated with a cD galaxy may be either steep or normal, but the low-frequency spectrum from a core of bright galaxies is usually steep. A steep spectrum may develop when a radio source is confined by hot gas in a cluster over a long period (109 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed.  相似文献   

16.
With the advent of the new generation wide-field cameras it became possible to survey in an unbiased mode galaxies spanning a variety of local densities, from the core of rich clusters, to compact and loose groups, down to filaments and voids. The sensitivity reached by these instruments allowed to extend the observation to dwarf galaxies, the most “fragile” objects in the universe. At the same time models and simulations have been tailored to quantify the different effects of the environment on the evolution of galaxies. Simulations, models, and observations consistently indicate that star-forming dwarf galaxies entering high-density environments for the first time can be rapidly stripped from their interstellar medium. The lack of gas quenches the activity of star formation, producing on timescales of \({\sim }\)1 Gyr quiescent galaxies with spectro-photometric, chemical, structural, and kinematical properties similar to those observed in dwarf early-type galaxies inhabiting rich clusters and loose groups. Simulations and observations consistently identify ram pressure stripping as the major effect responsible for the quenching of the star-formation activity in rich clusters. Gravitational interactions (galaxy harassment) can also be important in groups or in clusters whenever galaxies have been members since early epochs. The observation of clusters at different redshifts combined with the present high infalling rate of galaxies onto clusters indicate that the quenching of the star-formation activity in dwarf systems and the formation of the faint end of the red sequence is a very recent phenomenon.  相似文献   

17.
I consider X-ray emitting clusters of galaxies in the context of modified Newtonian dynamics (MOND). Self-gravitating isothermal gas spheres are not good representations of rich clusters; the X-ray luminosity at a given temperature is typically an order of magnitude larger than observed, and the predicted X-ray surface brightness distribution is not well-matched by the standard 'β-model' fits to the observations. Pure gas spheres with a density distribution described by a β-model also fail because, with MOND, these objects are far from isothermal and again overluminous. These problems may be resolved by adding an additional dark mass component in the central regions, here modelled by a constant density sphere contained within two core radii and having a mass typically of one to two times the total cluster mass in the gas. With this additional component, the observed luminosity–temperature relation for clusters of galaxies is reproduced, and the typical mass discrepancy in actual clusters is three to four times smaller than implied by Newtonian dynamics. Thus, while MOND significantly reduces the mass of the dark component in clusters it does not remove it completely. I speculate on the nature of the dark component and argue that neutrinos, with mass near the experimental upper limit are a possible candidate.  相似文献   

18.
Large-scale bulk motions and hydrodynamic turbulence in the intergalactic gas that fills clusters of galaxies significantly broaden X-ray emission lines. For lines of heavy ions (primarily helium-like and hydrogen-like iron ions), the hydrodynamic broadening is appreciably larger than the thermal broadening. Since clusters of galaxies have a negligible optical depth for resonant scattering in the forbidden and intercombination lines of these ions, these lines are not additionally broadened. At the same time, they are very intense, which allows deviations of the spectrum from the Gaussian spectrum in the line wings to be investigated. The line shape proves to be an important indicator of bulk hydrodynamic processes. Doppler probing of turbulence becomes possible, because the cryogenic detectors of the X-ray observatories now ready for launch and being planned will have a high energy resolution (from 5 eV for ASTRO-E2 to 1–2 eV for Constellation-X and XEUS). We use the spectral representation of a Kolmogorov cascade in the inertial range to calculate the characteristic shapes of radiation lines. Significant deviations in the line profiles from the Gaussian profile (shape asymmetry, additional peaks, sharp breaks in the exponential tails) are expected for large-scale turbulence. The kinematic SZ effect and the X-ray line profiles carry different information about the hydrodynamic velocity distribution in clusters of galaxies and complement each other, allowing the redshift, the peculiar velocity of the cluster, and the bulk velocity dispersion to be separated.  相似文献   

19.
20.
Using a large (14 857), homogenously selected sample of cluster galaxies identified in the Sloan Digital Sky Survey Data Release 4, we investigate the impact of cluster membership and local density on the stellar mass–gas phase metallicity relation (MZR). We show that stellar metallicities are not suitable for this work, being relatively insensitive to subtle changes in the MZR. Accurate nebular abundances can be obtained for 1318 cluster galaxies in our sample and we show that these galaxies are drawn from clusters that are fully representative of the parent sample in terms of mass, size, velocity dispersion and richness. By comparing the MZR of the cluster galaxies with a sample of control galaxies matched in mass, redshift, fibre covering fraction and rest-frame   g − r   colour cluster galaxies are found to have, on average, higher metallicities by up to 0.04 dex. The magnitude of this offset does not depend strongly on galactic half-light radius or cluster properties such as velocity dispersion or cluster mass. The effect of local density on the MZR is investigated, using the presence of a near neighbour and both two- and three-dimensional density estimators. For all three metrics, it is found that the cluster galaxies in locally rich environments have higher median metallicities by up to ∼0.05 dex than those in locally poor environments (or without a near neighbour). Control (non-cluster) galaxies at locally high densities exhibit similar metal enhancements. Taken together, these results show that galaxies in clusters are, on average, slightly more metal rich than the field, but that this effect is driven by local overdensity and not simply cluster membership.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号